Amenability of semigroups and their algebras modulo a group congruence

被引:0
|
作者
M. Amini
H. Rahimi
机构
[1] Tarbiat Modares University,Department of Mathematics, Faculty of Mathematical Sciences
[2] School of Mathematics,Department of Mathematics, Faculty of Science, Central Tehran Branch
[3] Institute for Research in Fundamental Sciences (IPM),undefined
[4] Islamic Azad University,undefined
来源
Acta Mathematica Hungarica | 2014年 / 144卷
关键词
43A07; 46H25; semigroup algebra; inverse semigroup; -inversive ; -semigroup; group congruence; amenability modulo an ideal;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the amenability of the semigroup algebras ℓ1(S/ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell^1(S/\rho)}$$\end{document} , where ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho}$$\end{document} is a group congruence (not necessarily minimal) on a semigroup S. We relate this to a new notion of amenability of Banach algebras modulo an ideal, to prove a version of Johnson’s theorem for a large class of semigroups, including inverse semigroups, E-inversive semigroup and E-inversive E-semigroups.
引用
收藏
页码:407 / 415
页数:8
相关论文
共 50 条
  • [31] Approximate amenability of Banach category algebras with application to semigroup algebras
    M. Maysami Sadr
    A. Pourabbas
    Semigroup Forum, 2009, 79 : 55 - 64
  • [32] Approximate amenability of Banach category algebras with application to semigroup algebras
    Sadr, M. Maysami
    Pourabbas, A.
    SEMIGROUP FORUM, 2009, 79 (01) : 55 - 64
  • [33] On the representation of lattices by congruence lattices of semigroups
    Popovich, A. L.
    Repnitskii, V. B.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (02): : 199 - 208
  • [34] PERMANENTLY WEAK AMENABILITY OF REES SEMIGROUP ALGEBRAS
    Hosseinzadeh, Hasan
    Jabbari, Ali
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (01): : 117 - 124
  • [35] APPROXIMATE AND ESSENTIAL LEFT AMENABILITY OF LAU ALGEBRAS WITH APPLICATION TO SEMIGROUP ALGEBRAS
    Bami, Mahmoud Lashkarizadeh
    Samea, Hojatollah
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2009, 46 (01) : 1 - 24
  • [36] THE STRUCTURE AND AMENABILITY OF lP-MUNN ALGEBRAS
    Naseri, S.
    Samea, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2010, 36 (02) : 75 - 83
  • [37] Module Amenability and Tensor Product of Semigroup Algebras
    Bodaghi, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2010, 4 (02) : 97 - 106
  • [38] MODULE (phi,psi)- AMENABILITY OF BANACH ALGEBRAS
    Bodaghi, Abasalt
    ARCHIVUM MATHEMATICUM, 2010, 46 (04): : 227 - 235
  • [39] On operator amenability of Fourier-Stieltjes algebras
    Spronk, Nico
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 158
  • [40] MODULE JOHNSON AMENABILITY OF CERTAIN BANACH ALGEBRAS
    Sahami, Amir
    Shariati, Seyedeh Fatemeh
    Pourabbas, Abdolrasoul
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (02): : 165 - 176