Amenability of semigroups and their algebras modulo a group congruence

被引:0
|
作者
M. Amini
H. Rahimi
机构
[1] Tarbiat Modares University,Department of Mathematics, Faculty of Mathematical Sciences
[2] School of Mathematics,Department of Mathematics, Faculty of Science, Central Tehran Branch
[3] Institute for Research in Fundamental Sciences (IPM),undefined
[4] Islamic Azad University,undefined
来源
Acta Mathematica Hungarica | 2014年 / 144卷
关键词
43A07; 46H25; semigroup algebra; inverse semigroup; -inversive ; -semigroup; group congruence; amenability modulo an ideal;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the amenability of the semigroup algebras ℓ1(S/ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell^1(S/\rho)}$$\end{document} , where ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho}$$\end{document} is a group congruence (not necessarily minimal) on a semigroup S. We relate this to a new notion of amenability of Banach algebras modulo an ideal, to prove a version of Johnson’s theorem for a large class of semigroups, including inverse semigroups, E-inversive semigroup and E-inversive E-semigroups.
引用
收藏
页码:407 / 415
页数:8
相关论文
共 50 条