Strain Energy Based Method for Metal Magnetic Memory Effect of Tensile Tested Structures

被引:0
作者
Changrong Chen
Shoujin Zeng
Liangyou Su
机构
[1] Fujian University of Technology,School of Mechanical and Automotive Engineering
[2] Fuyao Industrial Area II,undefined
[3] Triplex Group,undefined
来源
Journal of Nondestructive Evaluation | 2019年 / 38卷
关键词
Metal magnetic memory; Static tensile test; Strain energy density; Magnetic flux leakage; Finite element modelling;
D O I
暂无
中图分类号
学科分类号
摘要
The metal magnetic memory (MMM) technique has been widely regarded as an effective method to locate stress concentration zones and to identify structural defects. To study its applicability in prognostics of structure damage, a series of static tensile tests and MMM measurement were carried out on the commonly used Q235 steel. The experimental results show that the normal component of self-magnetic-flux-leakage signals Hpz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_p^z$$\end{document} is linear with the position in loading direction x and the gradient Gz,x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{z,x}$$\end{document} increases with an increase in the external load. 2D magnetostatic finite element analyses indicate that the variations of Gz,x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{z,x}$$\end{document} should be due to the change in relative permeability of the specimen after the effect of mechanical loading under geomagnetic field. The strain energy density in the structure during loading is found to be exponentially determined by Gz,x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{z,x}$$\end{document} with an adjusted R-squared value of 0.9984. The monotonous correlation enables prediction of structure damage using the MMM technique.
引用
收藏
相关论文
共 84 条
[1]  
Bao S(2014)Magnetic field variation of a low-carbon steel under tensile stress Insight-Non-Destr. Test. Cond. Monit. 252 255-263
[2]  
Lou H(2015)Experiment on the relationship between the magnetic field variation and tensile stress considering the loading history in u75v rail steel Insight-Non-Destr. Test. Cond. Monit. 57 683-688
[3]  
Gong S(2007)Metal magnetic memory signals from surface of low-carbon steel and low-carbon alloyed steel J. Central South Univ. Technol. 14 24-27
[4]  
Bao S(2008)Influence of stress on the stray field signals of ferromagnetic materials J. Univ. Sci. Technol. Beijing 15 580-584
[5]  
Hu SN(2011)Measurement of self-emitting magnetic signals from a precut notch of Q235 steel during tensile test IFIP Adv. Inf. Commun. Technol. 347 231-236
[6]  
Lin L(1998)Screening of weld quality using the magnetic metal memory effect Weld. World 41 196-199
[7]  
Gu YB(2011)Effect of tensile stress on the variation of magnetic field of low-alloy steel J. Magn. Magn. Mater. 323 2474-2477
[8]  
Fu ML(2015)Characteristics of spontaneous magnetic field of artificial crack induced by complex stress in large components Proc. Eng. 130 1642-1648
[9]  
Dong LH(2017)Effect of temperature and stress on residual magnetic signals in ferromagnetic structural steel Trans. Magn. 53 1-8
[10]  
Xu BS(2014)Characterization of spontaneous magnetic signals induced by cyclic tensile stress in crack propagation stage J. Magn. Magn. Mater. 365 70-75