Prediction of the Diagrams of Fatigue Fracture of D16T Aluminum Alloy by the Methods of Machine Learning

被引:0
作者
О. P. Yasnii
O. А. Pastukh
Yu. І. Pyndus
N. S. Lutsyk
I. S. Didych
机构
[1] Pulyui Ternopil’ National Technical University,
来源
Materials Science | 2018年 / 54卷
关键词
fatigue crack growth; stress intensity factor; load ratio; durability; neural network; machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
By the methods of machine learning (neural networks, boosted trees, random forests, support-vector machines, and k -nearest neighbors), we plotted the diagrams of fatigue fracture of D16T aluminum alloy under regular loading with a stress ratio R = 0, 0.2, 0.4, and 0.6. The obtained results are in good agreement with the experimental data. It was discovered that the method of neural networks gives the least prediction error equal to 3.2 and 2.5% in tested samples.
引用
收藏
页码:333 / 338
页数:5
相关论文
共 21 条
[11]  
Klesnil M(undefined)undefined undefined undefined undefined-undefined
[12]  
Lukas P(undefined)undefined undefined undefined undefined-undefined
[13]  
Kujawski D(undefined)undefined undefined undefined undefined-undefined
[14]  
Ellyin F(undefined)undefined undefined undefined undefined-undefined
[15]  
Yasnii P(undefined)undefined undefined undefined undefined-undefined
[16]  
Pyndus Y(undefined)undefined undefined undefined undefined-undefined
[17]  
Fostyk V(undefined)undefined undefined undefined undefined-undefined
[18]  
Baptista CARP(undefined)undefined undefined undefined undefined-undefined
[19]  
Adib AML(undefined)undefined undefined undefined undefined-undefined
[20]  
Torres MAS(undefined)undefined undefined undefined undefined-undefined