Diophantine approximation with two primes and powers of two

被引:0
作者
Yuchao Wang
机构
[1] Shandong University,School of Mathematics
来源
The Ramanujan Journal | 2016年 / 39卷
关键词
Diophantine inequalities; Prime; Goldbach-type theorems; Hardy–Littlewood method; 11J25; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
We refine a result of Languasco and Zaccagnini (J Number Theory 132:3016–3028, 2012) on Diophantine approximation with two primes and powers of two. We improve the upper bound on the least value s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_0$$\end{document} which ensures that for all s≥s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge s_0$$\end{document}, there exists an approximation to any real number by values of the form λ1p1+λ2p2+μ12m1+⋯+μs2ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1p_1+\lambda _2p_2+\mu _1 2^{m_1}+\dots +\mu _s 2^{m_s}$$\end{document}, where p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1$$\end{document}, p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2$$\end{document} are primes; m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1$$\end{document}, ⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dots $$\end{document}, ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_s$$\end{document} are positive integers; λ1/λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1/\lambda _2$$\end{document} belongs to a certain subset of negative irrational numbers and λ1/μ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1/\mu _1$$\end{document}, λ2/μ2∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2/\mu _2\in \mathbb {Q}$$\end{document}.
引用
收藏
页码:235 / 245
页数:10
相关论文
共 29 条
[1]  
Davenport H(1946)On indefinite quadratic forms in five variables J. Lond. Math. Soc. 21 185-193
[2]  
Heilbronn H(1975)Primes and powers of 2 Invent. Math. 29 125-142
[3]  
Gallagher PX(1991)Diophantine approximation by prime numbers J. Lond. Math. Soc. 44 218-226
[4]  
Harman G(2004)The values of ternary quadratic forms at prime arguments Mathematika 51 83-96
[5]  
Harman G(2002)Integers represented as a sum of primes and powers of two Asian J. Math. 6 535-565
[6]  
Heath-Brown DR(2010)On a Diophantine problem with two primes and Acta Arith. 145 193-208
[7]  
Puchta J-C(2012) powers of two J. Number Theory 132 3016-3028
[8]  
Languasco A(2000)A Diophantine problem with a prime and three squares of primes Acta Arith. 92 229-237
[9]  
Zaccagnini A(2001)The number of powers of 2 in a representation of large even integers by sums of such powers and two primes Acta Arith. 96 369-379
[10]  
Languasco A(1951)The number of powers of 2 in a representation of large even integers by sums of such powers and two primes (II) Trudy Mat. Inst. Steklov 38 151-169