Adaptive observer design for nonlinear systems using generalized nonlinear observer canonical form

被引:0
作者
Nam-Hoon Jo
Young-Ik Son
机构
[1] Soongsil University,School of Electrical Engineering
[2] Myongji University,Department of Electrical Engineering
来源
KSME International Journal | 2004年 / 18卷
关键词
Nonlinear System; Adaptive Observer; Nonlinear Observer Canonical Form; Generalized Nonlinear Observer Canonical Form; Strictly Positive Real;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present an adaptive observer for nonlinear systems that include unknown constant parameters and are not necessarily observable. Sufficient conditions are given for a nonlinear system to be transformed by state-space change of coordinates into an adaptive observer canonical form. Once a nonlinear system is transformed into the proposed adaptive observer canonical form, an adaptive observer can be designed under the assumption that a certain system is strictly positive real. An illustrative example is included to show the effectiveness of the proposed method.
引用
收藏
页码:1150 / 1158
页数:8
相关论文
共 26 条
[1]  
Choi J. S.(2002)A Single DOF Magnetic Levitation System Using Time Delay Control and Reduced-Order Observer KSME Internationa Journal 16 1643-1651
[2]  
Baek Y. S.(2003)Robust Control for Rotational Inverted Pendulums Using Output Feedback Sliding Mode Controller and Disturbance Observer KSME International Journal 17 1466-1474
[3]  
Choi J. J.(2002)Observer Design for Nonlinear Systems That are Not Uniformly Observable Int. J. Control 75 369-380
[4]  
Kim J. S.(2000)Input Output Linearization Approach to State Observer Design for Nonlinear Systems IEEE Trans. Automat. Contr 45 2388-2393
[5]  
Jo N. H.(1983)Linearization by Output Injection and Nonlinear Observers Systems & Control Letters 3 47-52
[6]  
Seo J. H.(1985)Nonlinear Observers with Linearizable Error Dynamics SIAM J. Control Optim 23 197-216
[7]  
Jo N. H.(1968)Stability Theory for Ordinary Differential Equations Journal of Differential Equations 4 57-65
[8]  
Seo J. H.(1990)Adaptive Observers for Single Output Nonlinear Systems IEEE Trans. Automat. Contr 35 1054-1058
[9]  
Krener A. J.(1965)On the Existence of Lyapunov Functions for the Problem of Lur’e SIAM J. Control Optim 3 373-383
[10]  
Isidori A.(1994)A Block Triangular Nonlinear Observer Normal Form Systems & Control Letters 23 1-8