The fundamental group and extensions of motives of Jacobians of curves

被引:0
作者
Subham Sarkar
Ramesh Sreekantan
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Indian Statistical Institute,Statistics and Mathematics Unit
来源
Proceedings - Mathematical Sciences | 2020年 / 130卷
关键词
Algebraic cycles; mixed Hodge structures; extensions; regulators; curves; Jacobians; higher Chow cycles; motivic cycles; 19F27; 11G55; 14C30; 14C35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we construct extensions of mixed Hodge structure coming from the mixed Hodge structure on the graded quotients of the group ring of the fundamental group of a smooth projective pointed curve which correspond to the regulators of certain motivic cohomology cycles on the Jacobian of the curve essentially constructed by Bloch and Beilinson. This leads to a new iterated integral expression for the regulator. This is a generalisation of a theorem of Colombo (J. Algebr. Geom.11(4) (2002) 761–790) where she constructed the extension corresponding to Collino’s cycles in the Jacobian of a hyperelliptic curve.
引用
收藏
相关论文
共 10 条
[1]  
Bloch Spencer(1984)Algebraic cycles and values of J. Reine Angew. Math. 350 94-108
[2]  
Chen Kuo Tsai(1977)-functions Bull. Amer. Math. Soc. 83 831-879
[3]  
Collino A(1997)Iterated path integrals J. Algebraic Geom. 6 393-415
[4]  
Colombo Elisabetta(2002)Griffiths’ infinitesimal invariant and higher J. Algebraic Geom. 11 761-790
[5]  
Harris Bruno(1983)-theory on hyperelliptic Jacobians Proc. Nat. Acad. Sci. U.S.A. 80 1157-1158
[6]  
Kaenders Rainer H(2001)The mixed Hodge structure on the fundamental group of hyperelliptic curves and higher cycles Proc. Amer. Math. Soc. 129 1271-1281
[7]  
Otsubo Noriyuki(2011)Homological versus algebraic equivalence in a Jacobian J. Reine Angew. Math. 660 27-82
[8]  
Otsubo Noriyuki(2012)The mixed Hodge structure on the fundamental group of a punctured Riemann surface Math. Z. 270 423-444
[9]  
Pulte Michael J(1988)On the regulator of Fermat motives and generalized hypergeometric functions Duke Math. J. 57 721-760
[10]  
Rabi Reuben(2001)On the Abel-Jacobi maps of Fermat Jacobians Manuscripta Math. 105 425-469