For the Fejer means on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L_p(R), 1\le p\le\infty$\end{document} an equivalence between the rate of its convergence and an appropriate
K-functional is established. For the Bochner-Riesz means on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L_p(R^d), 1\le p\le\infty, d=1,2,\dots$\end{document} an equivalence between the rate of convergence and the corresponding K-functional is obtained. The results are of the form of strong converse inequality of type A.