On Fejer and Bochner-Riesz Means

被引:0
作者
Z. Ditzian
机构
[1] Department of Mathematical and Statistical Sciences University of Alberta Edmonton,
[2] Alberta T6G 2G1,undefined
来源
Journal of Fourier Analysis and Applications | 2005年 / 11卷
关键词
Differential Equation; Partial Differential Equation; Fourier Analysis; Converse Inequality; Strong Converse;
D O I
暂无
中图分类号
学科分类号
摘要
For the Fejer means on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_p(R), 1\le p\le\infty$\end{document} an equivalence between the rate of its convergence and an appropriate K-functional is established. For the Bochner-Riesz means on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_p(R^d), 1\le p\le\infty, d=1,2,\dots$\end{document} an equivalence between the rate of convergence and the corresponding K-functional is obtained. The results are of the form of strong converse inequality of type A.
引用
收藏
页码:489 / 496
页数:7
相关论文
empty
未找到相关数据