A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes

被引:0
|
作者
Tatsuhiko Naito
Ken Suzuki
Jun Hirata
Yoichiro Kamatani
Koichi Matsuda
Tatsushi Toda
Yukinori Okada
机构
[1] Osaka University Graduate School of Medicine,Department of Statistical Genetics
[2] The University of Tokyo,Department of Neurology, Graduate School of Medicine
[3] Pharmaceutical Discovery Research Laboratories,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences
[4] Teijin Pharma Limited,Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences
[5] The University of Tokyo,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI
[6] The University of Tokyo,IFReC)
[7] Osaka University,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives
[8] Osaka University,undefined
来源
Nature Communications | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Conventional human leukocyte antigen (HLA) imputation methods drop their performance for infrequent alleles, which is one of the factors that reduce the reliability of trans-ethnic major histocompatibility complex (MHC) fine-mapping due to inter-ethnic heterogeneity in allele frequency spectra. We develop DEEP*HLA, a deep learning method for imputing HLA genotypes. Through validation using the Japanese and European HLA reference panels (n = 1,118 and 5,122), DEEP*HLA achieves the highest accuracies with significant superiority for low-frequency and rare alleles. DEEP*HLA is less dependent on distance-dependent linkage disequilibrium decay of the target alleles and might capture the complicated region-wide information. We apply DEEP*HLA to type 1 diabetes GWAS data from BioBank Japan (n = 62,387) and UK Biobank (n = 354,459), and successfully disentangle independently associated class I and II HLA variants with shared risk among diverse populations (the top signal at amino acid position 71 of HLA-DRβ1; P = 7.5 × 10−120). Our study illustrates the value of deep learning in genotype imputation and trans-ethnic MHC fine-mapping.
引用
收藏
相关论文
共 49 条
  • [41] Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
    Anubha Mahajan
    Daniel Taliun
    Matthias Thurner
    Neil R. Robertson
    Jason M. Torres
    N. William Rayner
    Anthony J. Payne
    Valgerdur Steinthorsdottir
    Robert A. Scott
    Niels Grarup
    James P. Cook
    Ellen M. Schmidt
    Matthias Wuttke
    Chloé Sarnowski
    Reedik Mägi
    Jana Nano
    Christian Gieger
    Stella Trompet
    Cécile Lecoeur
    Michael H. Preuss
    Bram Peter Prins
    Xiuqing Guo
    Lawrence F. Bielak
    Jennifer E. Below
    Donald W. Bowden
    John Campbell Chambers
    Young Jin Kim
    Maggie C. Y. Ng
    Lauren E. Petty
    Xueling Sim
    Weihua Zhang
    Amanda J. Bennett
    Jette Bork-Jensen
    Chad M. Brummett
    Mickaël Canouil
    Kai-Uwe Ec kardt
    Krista Fischer
    Sharon L. R. Kardia
    Florian Kronenberg
    Kristi Läll
    Ching-Ti Liu
    Adam E. Locke
    Jian’an Luan
    Ioanna Ntalla
    Vibe Nylander
    Sebastian Schönherr
    Claudia Schurmann
    Loïc Yengo
    Erwin P. Bottinger
    Ivan Brandslund
    Nature Genetics, 2018, 50 : 1505 - 1513
  • [42] Association of HLA-DQ trans-heterodimers with prevalence of type 1 diabetes mellitus in Buryat ethnic group
    Ivanova, O. N.
    Prokof'ev, S. A.
    Bardymova, T. P.
    DIABETES MELLITUS, 2012, 15 (03): : 11 - 17
  • [43] Trans-Ethnic Meta-Analysis across 8 Populations within a Replicated Type 2 Diabetes Linkage Signal on Chromosome 1q
    Rayner, Nigel W.
    Horikoshi, Momoko
    Morris, Andrew P.
    Zeggini, Eleftheria
    Hanson, Robert L.
    Mitchell, Braxton D.
    Baier, Leslie
    Das, Swapan K.
    Fu, Mao
    Hu, Cheng
    Ma, Ronald
    Vaxillaire, Martine
    Wang, Cong-Rong
    Chan, Juilana
    Jia, Weiping
    Froguel, Philippe
    Elbein, Steven C.
    Deloukas, Panos
    Bogardus, Clifton
    Shuldiner, Alan R.
    Prokopenko, Inga
    McCarthy, Mark I.
    DIABETES, 2011, 60 : A385 - A385
  • [44] Fine-mapping and Identification of Two Novel Susceptibility Loci for Type 2 Diabetes through 1000 Genomes and UK10K Imputation in 13,201 Cases and 59,656 Controls
    Bonas, Silvia
    Sanchez, Friman
    Torrents, David
    Mercader, Josep Maria
    DIABETES, 2015, 64 : A459 - A459
  • [45] Physiology-Informed Deep Learning Modeling of Type 1 Diabetes Dynamics: Mapping Data to Virtual Subjects
    Crespo-Santiago, Alvaro
    Cescon, Marzia
    IFAC PAPERSONLINE, 2024, 58 (15): : 235 - 240
  • [46] Fine-mapping of the type 1 diabetes locus (IDDM4) on chromosome 11q and evaluation of two candidate genes (FADD and GALN) by affected sibpair and linkage-disequilibrium analyses
    Eckenrode, S
    Marron, MP
    Nicholls, R
    Yang, MCK
    Yang, JJ
    Fonseca, LCG
    She, JX
    HUMAN GENETICS, 2000, 106 (01) : 14 - 18
  • [47] Fine-mapping of the type 1 diabetes locus (IDDM4) on chromosome 11q and evaluation of two candidate genes (FADD and GALN) by affected sibpair and linkage-disequilibrium analyses
    S. Eckenrode
    M.P. Marron
    R. Nicholls
    M.C.K. Yang
    J.J. Yang
    L.C. Guida Fonseca
    J.-X. She
    Human Genetics, 2000, 106 : 14 - 18
  • [48] A DEEP LEARNING/RECURRENT NEURAL NETWORK METHOD TO PREDICT HOSPITAL ADMISSION FOR DIABETIC KETOACIDOSIS AMONG YOUTH WITH TYPE 1 DIABETES (T1D)
    Dass, S.
    Bass, J.
    Williams, D.
    Patton, S.
    Mcdonough, R.
    Schoelch, M.
    Barnes, M.
    Mehta, S.
    D'Avolio, L.
    Clements, M.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2020, 22 : A31 - A31
  • [49] Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish - Evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24
    Hsueh, WC
    St Jean, PL
    Mitchell, BD
    Pollin, TI
    Knowler, WC
    Ehm, MG
    Bell, CJ
    Sakul, H
    Wagner, MJ
    Burns, DK
    Shuldiner, AR
    DIABETES, 2003, 52 (02) : 550 - 557