共 23 条
[1]
Bellman R., Adaptive Control Processes: A Guided Tour, Princeton University Press, Princeton, New Jersey, (1961)
[2]
Cances E., Ehrlacher V., Lelievre T., Convergence of a greedy algorithm for highdimensional convex nonlinear problems, Math. Models Methods Appl. Sci., 21, pp. 2433-2467, (2011)
[3]
Carroll J.D., Chang J.J., Analysis of individual differences in multidimensional scaling via n-way generalization of ‘Eckart-Young’ decomposition, Psychometrika, 35, pp. 283-319, (1970)
[4]
Dolgov S.V., Khoromskij B.N., Oseledets I.V., Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker-Planck equation, SIAM J. Sci. Comput., 34, pp. A3016-A3038, (2012)
[5]
Dolgov S.V., Khoromskij B.N., Oseledets I.V., Savostyanov D.V., Computation of extreme eigenvalues in higher dimensions using block tensor train format, Comput. Phys. Commun., 185, pp. 1207-1216, (2014)
[6]
Dolgov S.V., Savostyanov D.V., Alternating minimal energy methods for linear systems in higher dimensions, SIAM J. Sci. Comput., 36, pp. A2248-A2271, (2014)
[7]
Figueroa L.E., Suli E., Greedy approximation of high-dimensional Ornstein-Uhlenbeck operators, Found. Comput. Math., 12, pp. 573-623, (2012)
[8]
Hackbusch W., Khoromskij B.N., Sauter S., Tyrtyshnikov E.E., Use of tensor formats in elliptic eigenvalue problems, Numer. Linear Algebra Appl., 19, pp. 133-151, (2012)
[9]
Kazeev V.A., Khoromskij B.N., Low-rank explicit QTT representation of the Laplace operator and its inverse, SIAM J. Matrix Anal. Appl., 33, pp. 742-758, (2012)
[10]
Kellogg R.B., An alternating direction method for operator equations, J. Soc. Indust. Appl. Math., 12, pp. 848-854, (1964)