Differential identities on ideals in prime rings

被引:0
作者
Motoshi Hongan
Nadeem ur Rehman
Hafedh M. Alnoghashi
机构
[1] Okayama University,Department of Mathematics
[2] Aligarh Muslim University,undefined
来源
Afrika Matematika | 2022年 / 33卷
关键词
Prime rings; Generalized derivations; Ideal; 16W25; 16N60; 16W20;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper aims to study the connection between commutativity of rings and the behaviour of their generalized derivations. More precisely, we investigate the commutative prime rings R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {R}}$$\end{document}, which admit generalized derivations Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document}, Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}, and Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document} satisfying specific differential identities on a certain subset of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {R}}$$\end{document}.
引用
收藏
相关论文
共 15 条
[1]  
Abu-Nawas MK(2018)On ideals and commutativity of prime rings with generalized derivations Eur. J. Pure Appl. Math. 11 79-89
[2]  
Al-Omary RM(2008)Centralizing and commuting generalized derivation on prime rings Matema 60 1-2
[3]  
Asif A(1992)Remarks on derivations on semiprime rings Internat. J. Math. Math. Sci. 15 205-206
[4]  
Shah T(2015)Lie ideals and generalized derivations in semiprime rings Iran. J. Math. Sci. Inf. 10 45-54
[5]  
Daif MN(1997)A note on semiprime rings with derivation Internat. J. Math. Math. Sci. 20 413-415
[6]  
Bell HE(1999)A result on derivations with engel condition in prime rings Southeast Asian Bull. Math. 23 437-446
[7]  
Filippis VD(2003)Generalized derivations and commutativity of prime rings Indian J. Pure Appl. Math. 34 1393-1396
[8]  
Rehman N(undefined)undefined undefined undefined undefined-undefined
[9]  
Ansari A(undefined)undefined undefined undefined undefined-undefined
[10]  
Hongan M(undefined)undefined undefined undefined undefined-undefined