Disynaptic effect of hilar cells on pattern separation in a spiking neural network of hippocampal dentate gyrus

被引:0
作者
Sang-Yoon Kim
Woochang Lim
机构
[1] Daegu National University of Education,Institute for Computational Neuroscience and Department of Science Education
来源
Cognitive Neurodynamics | 2022年 / 16卷
关键词
Hippocampal dentate gyrus; Granule cells; Pattern separation; Mossy cells; HIPP cells; Disynaptic effect; Sparsely synchronized rhythm;
D O I
暂无
中图分类号
学科分类号
摘要
We study the disynaptic effect of the hilar cells on pattern separation in a spiking neural network of the hippocampal dentate gyrus (DG). The principal granule cells (GCs) in the DG perform pattern separation, transforming similar input patterns into less-similar output patterns. In our DG network, the hilus consists of excitatory mossy cells (MCs) and inhibitory HIPP (hilar perforant path-associated) cells. Here, we consider the disynaptic effects of the MCs and the HIPP cells on the GCs, mediated by the inhibitory basket cells (BCs) in the granular layer; MC →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document} BC →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document} GC and HIPP →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document} BC →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document} GC. The MCs provide disynaptic inhibitory input (mediated by the intermediate BCs) to the GCs, which decreases the firing activity of the GCs. On the other hand, the HIPP cells disinhibit the intermediate BCs, which leads to increasing the firing activity of the GCs. In this way, the disynaptic effects of the MCs and the HIPP cells are opposite. We investigate change in the pattern separation efficacy by varying the synaptic strength K(BC,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^\mathrm{(BC, X)}$$\end{document} [from the pre-synaptic X (= MC or HIPP) to the post-synaptic BC]. Thus, sparsity for the firing activity of the GCs is found to improve the efficacy of pattern separation, and hence the disynaptic effects of the MCs and the HIPP cells on the pattern separation become opposite ones. In the combined case when simultaneously changing both K(BC,MC)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^\mathrm{(BC, MC)}$$\end{document} and K(BC,HIPP)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^\mathrm{(BC, HIPP)}$$\end{document}, as a result of balance between the two competing disynaptic effects of the MCs and the HIPP cells, the efficacy of pattern separation is found to become the highest at their original default values where the activation degree of the GCs is the lowest. We also note that, while the GCs perform pattern separation, sparsely synchronized rhythm is found to appear in the population of the GCs. Hence, we examine quantitative association between population and individual firing behaviors in the sparsely synchronized rhythm and pattern separation. They are found to be strongly correlated. Consequently, the better the population and individual firing behaviors in the sparsely synchronized rhythm are, the more pattern separation efficacy becomes enhanced.
引用
收藏
页码:1427 / 1447
页数:20
相关论文
共 254 条
[1]  
Almeida LD(2009)A second function of gamma frequency oscillations: An E%-max winner-take-all mechanism selects which cells fire J Neurosci 29 7497-7503
[2]  
Idiart M(1989)The three-dimensional organization of the hippocampal formation: A review of anatomical data Neuroscience 31 571-591
[3]  
Lisman JE(1990)Neurons, numbers and the hippocampal network Prog Brain Res 83 1-11
[4]  
Amaral DG(2007)The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies) Prog Brain Res 163 3-22
[5]  
Witter MP(1971)Lamellar organization of hippocampal excitatory pathways Exp Brain Res 13 222-238
[6]  
Amaral DG(2000)The hippocampal lamella hypothesis revisited Brain Res 886 165-171
[7]  
Ishizuka N(2008)Pattern separation in the human hippocampal CA3 and dentate gyrus Science 319 1640-1642
[8]  
Claiborne B(2019)Network structure and input integration in competing firing rate models for decision-making J Comput Neurosci 46 145-168
[9]  
Amaral DG(2001)Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network J Neurosci 21 2687-2698
[10]  
Scharfman HE(2000)Synaptic plasticity in the human dentate gyrus J Neurosci 20 7080-7086