Supersymmetric Quantum Mechanics with Lévy Disorder in One Dimension

被引:0
作者
Alain Comtet
Christophe Texier
Yves Tourigny
机构
[1] UPMC Univ. Paris 6,School of Mathematics
[2] Univ. Paris Sud,undefined
[3] CNRS,undefined
[4] LPTMS,undefined
[5] UMR 8626,undefined
[6] LPS,undefined
[7] UMR 8502,undefined
[8] University of Bristol,undefined
来源
Journal of Statistical Physics | 2011年 / 145卷
关键词
One dimensional disordered quantum mechanics; Supersymmetric quantum mechanics; Anderson localisation; Lyapunov exponent; Spectral singularities; Lévy processes;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Schrödinger equation with a random potential of the form [graphic not available: see fulltext] where w is a Lévy noise. We focus on the problem of computing the so-called complex Lyapunov exponent [graphic not available: see fulltext] where N is the integrated density of states of the system, and γ is the Lyapunov exponent. In the case where the Lévy process is non-decreasing, we show that the calculation of Ω reduces to a Stieltjes moment problem, we ascertain the low-energy behaviour of the density of states in some generality, and relate it to the distributional properties of the Lévy process. We review the known solvable cases—where Ω can be expressed in terms of special functions—and discover a new one.
引用
收藏
页码:1291 / 1323
页数:32
相关论文
共 50 条
[1]  
Applebaum D.(2004)Lévy processes—from probability to finance and quantum groups Not. Am. Math. Soc. 51 1336-1347
[2]  
Bertoin J.(2002)On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes Ann. Fac. Sci. Toulouse 11 33-45
[3]  
Yor M.(2005)Exponential functionals of Lévy processes Probab. Surv. 2 191-212
[4]  
Bertoin J.(2008)Localization for one-dimensional random potentials with large local fluctuations J. Phys. A, Math. Theor. 41 127-341
[5]  
Yor M.(1990)Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications Phys. Rep. 195 285-1081
[6]  
Bienaimé T.(1990)Classical diffusion of a particle in a one-dimensional random force field Ann. Phys. 201 1070-1788
[7]  
Texier C.(1979)WKB method for three-term recursion relations and quasienergies of an anharmonic oscillator Theor. Math. Phys. 37 1774-466
[8]  
Bouchaud J.-P.(1997)The mean velocity of a Brownian motion in a random Lévy potential Ann. Probab. 25 427-237
[9]  
Georges A.(2010)Products of random matrices and generalised quantum point scatterers J. Stat. Phys. 140 221-1189
[10]  
Bouchaud J.-P.(1967)WKB methods for difference equations I Appl. Sci. Res. 18 1175-82