Incremental visual tracking via sparse discriminative classifier

被引:0
|
作者
Rajkumari Bidyalakshmi Devi
Yambem Jina Chanu
Khumanthem Manglem Singh
机构
[1] NIT,Department of Computer Science
来源
Multimedia Systems | 2021年 / 27卷
关键词
Visual tracking; Sparse representation; Sparse discriminative classifier; Principal component analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Currently, visual object tracking is a core research area as it can be applied in many applications of computer vision. However, tracking of a visual object is a difficult task as it can go through different varying conditions like occlusion of the target object, appearance variation, illumination variation, etc. during the tracking process. An efficient and robust visual object tracking based on sparse discriminative classier (SDC) and principal component analysis (PCA) subspace representation is presented in this work. The PCA subspace representation modelled the appearance model of the target object and SDC separates the target object and background object very efficiently. The computational complexity is much better than the other existing methods in the literature. Both quantitative and qualitative analyses of different video sequences are done to compare the proposed tracking algorithm with the other existing tracking algorithms. The experimental results show that the proposed method outperforms the other existing tracking algorithms.
引用
收藏
页码:287 / 299
页数:12
相关论文
共 50 条
  • [1] Incremental visual tracking via sparse discriminative classifier
    Devi, Rajkumari Bidyalakshmi
    Chanu, Yambem Jina
    Singh, Khumanthem Manglem
    MULTIMEDIA SYSTEMS, 2021, 27 (02) : 287 - 299
  • [2] Visual Tracking via Discriminative Sparse Similarity Map
    Zhuang, Bohan
    Lu, Huchuan
    Xiao, Ziyang
    Wang, Dong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1872 - 1881
  • [3] Robust Visual Tracking via Discriminative Structural Sparse Feature
    Wang, Fenglei
    Zhang, Jun
    Guo, Qiang
    Liu, Pan
    Tu, Dan
    ADVANCES IN IMAGE AND GRAPHICS TECHNOLOGIES (IGTA 2015), 2015, 525 : 438 - 446
  • [4] Robust Visual Tracking via Discriminative Sparse Point Matching
    Wen, Hui
    Ge, Shiming
    Yang, Rui
    Chen, Shuixian
    Sun, Limin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1243 - 1246
  • [5] Robust visual tracking with discriminative sparse learning
    Lu, Xiaoqiang
    Yuan, Yuan
    Yan, Pingkun
    PATTERN RECOGNITION, 2013, 46 (07) : 1762 - 1771
  • [6] Robust visual tracking via discriminative appearance model based on sparse coding
    Zhao, Hainan
    Wang, Xuan
    MULTIMEDIA SYSTEMS, 2017, 23 (01) : 75 - 84
  • [7] Robust visual tracking via discriminative appearance model based on sparse coding
    Hainan Zhao
    Xuan Wang
    Multimedia Systems, 2017, 23 : 75 - 84
  • [8] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Yang, Guoliang
    Hu, Zhengwei
    Tang, Jun
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (02) : 627 - 636
  • [9] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Guoliang Yang
    Zhengwei Hu
    Jun Tang
    Arabian Journal for Science and Engineering, 2018, 43 : 627 - 636
  • [10] Discriminative Sparse Representation for Online Visual Object Tracking
    Bai, Tianxiang
    Li, Y. F.
    Zhou, Xiaolong
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,