A note on rough singular integrals in Triebel-Lizorkin spaces and Besov spaces

被引:0
作者
Feng Liu
Huoxiong Wu
Daiqing Zhang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2013卷
关键词
singular integrals; rough kernels; Triebel-Lizorkin spaces; Besov spaces;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the singular integral operators along polynomial curves. The boundedness for such operators on Triebel-Lizorkin spaces and Besov spaces is established, provided the kernels satisfy rather weak size conditions both on the unit sphere and in the radial direction. Moreover, the corresponding results for the singular integrals associated to the compound curves formed by polynomial with certain smooth functions are also given.
引用
收藏
相关论文
共 34 条
[1]  
Fefferman R(1979)A note on singular integrals Proc. Am. Math. Soc 74 266-270
[2]  
Namazi J(1986)A singular integral Proc. Am. Math. Soc 96 201-219
[3]  
Duoandikoetxea J(1986)Maximal and singular integral operators via Fourier transform estimates Invent. Math 84 541-561
[4]  
Rubio de Francia JL(1997)Singular integral operators with rough kernels supported by subvarieties Am. J. Math 119 799-839
[5]  
Fan D(2009)A note on the singular integrals associated with a variable surface of revolution Math. Inequal. Appl 12 441-454
[6]  
Pan Y(1999)A note of a rough singular integral operator Math. Inequal. Appl 2 73-81
[7]  
Fan D(2012) bounds for the parabolic singular integral operator J. Inequal. Appl 2012 1-9
[8]  
Sato S(2012)Multiple singular integrals and Marcinkiewicz integrals with mixed homogeneity along surfaces J. Inequal. Appl 2012 1-23
[9]  
Fan D(1972)On the function of Marcinkiewicz Stud. Math 44 203-217
[10]  
Guo K(1998) bounds for singular integrals and maximal singular integrals with rough kernels Indiana Univ. Math. J 47 455-469