Rigid G2-representations and motives of type G2

被引:0
作者
Michael Dettweiler
Johannes Schmidt
机构
[1] Universität Bayreuth,Mathematisches Institut
[2] Ruprecht-Karls-Universität Heidelberg,Mathematisches Institut
来源
Israel Journal of Mathematics | 2016年 / 212卷
关键词
Maximal Subgroup; Galois Group; Monodromy Group; Hyperplane Arrangement; Absolute Galois Group;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a family of motives associated to the rigid local system whose monodromy is dense in the simple algebraic group of type G2 and which has a local monodromy of order 7 at ∞. We prove an explicit Hilbert irreduciblity theorem for the associated étale realizations and deduce that the specialized motives at the points of irreducibility have motivic Galois group G2.
引用
收藏
页码:81 / 106
页数:25
相关论文
共 18 条
  • [1] André Y.(1996)Pour une théorie inconditionelle des motifs Institut des Hautes études Scientifiques. Publicationes Mathématiques 83 5-49
  • [2] Aschbacher M.(1987)Chevalley Groups of Type G2 as the Group of a Trilinear Form Journal of Algebra 109 193-259
  • [3] Beckmann S.(1991)On extensions of number fields obtained by specializing branched coverings Journal für die Reine und Angewandte Mathematik 419 27-53
  • [4] Deligne P.(1980)La conjecture de Weil. II Institut des Hautes études Scientifiques. Publications Mathématiques 52 137-252
  • [5] Dettweiler M.(2000)An Algorithm of Katz and its Application to the Inverse Galois Problem Journal of Symbolic Computation 30 761-798
  • [6] Reiter S.(2010)Rigid local systems and motives of type G2. With an appendix by Michael Dettweiler and Nicholas M. Katz Compositio Mathematica 146 929-963
  • [7] Dettweiler M.(1992)Cohomology of local systems on the complement of hyperplanes Inventiones Mathematicae 109 557-561
  • [8] Reiter S.(1992)Motives, numerical equivalence, and semi-simplicity Inventiones Mathematicae 107 447-452
  • [9] Katz N. M.(2003)A note on Artin motives Mathematical Research Letters 10 375-389
  • [10] Esnault H.(1988)The maximal subgroups of the Chevalley groups G2(q) with q odd the Ree groups 2G2(q), and their automorphism groups, Journal of Algebra 117 30-71