On the eigencurves of one dimensional p-Laplacian with weights for an elliptic Neumann problem

被引:0
作者
Ahmed Sanhaji
Ahmed Dakkak
机构
[1] University Sidi Mohamed Ben Abdellah,Laboratory LSI Department of Mathematics, Polydisciplinary, Faculty of TAZA
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2020年 / 69卷
关键词
p-Laplacian; Eigencurves; One dimensional; 35J30; 35J60; 35J66;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we study the existence of the eigencurves of one dimensional p-Laplacian with indefinite weights of the Neumann problem for the following elliptic equation -|u′|p-2u′′=αm1(x)+βm2(x)|u|p-2uinI=]a,b[u′(a)=u′(b)=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\left( |u'|^{p-2}u'\right) ' =\left( \alpha \, m_{1}(x)+\beta \,m_{2}(x)\right) |u|^{p-2}u\quad \text{ in } \; I = {]a,b[}\\ \quad \\ u'(a)=u'(b) = 0. \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \end{array} \right. \end{aligned}$$\end{document}Moreover, we establish their variational formulations and asymptotic behavior. Finally, we prove some properties of the principal eigencurve such as concavity and differentiability.
引用
收藏
页码:353 / 367
页数:14
相关论文
共 14 条
[1]  
Anane A(1987)Simplicit et isolation de la premire valeur propre du p-Laplacien avec poids C.R.A.S Paris t 305 725-728
[2]  
Anane A(2002)Spectrum of one dimensional p-laplacian operator with indefinite weight EJQTDE 17 1-11
[3]  
Chakrone O(1995)Bifurcation from eigencurves of the p-Laplacian Differ. Integral Equ. 8 405-414
[4]  
Moussa M(2007)Eigencurves of the p-Laplacian with weights and their asymptotic behavior Electron. J. Differ. Equ. 35 1-7
[5]  
Binding PA(2002)On the antimaximum principle for the p-Laplacian with indefinite weight Nonlinear Anal. 51 449-467
[6]  
Huang YX(1988)Bifurcation phenomena associated to the p-Laplace operator Trans. Am. Math. Soc. 310 419-431
[7]  
Dakkak A(1990)On eigenvalue problems of the p-Laplacian with Neumann boundary conditions Proc. Am. Math. Soc. 109 177-184
[8]  
Hadda M(undefined)undefined undefined undefined undefined-undefined
[9]  
Godoy T(undefined)undefined undefined undefined undefined-undefined
[10]  
Gossez J-P(undefined)undefined undefined undefined undefined-undefined