Envelopes and inequalities in vector lattices

被引:0
|
作者
A. G. Kusraev
S. S. Kutateladze
机构
[1] Southern Mathematical Institute,Vladikavkaz Scientific Center of the Russian Academy of Sciences
[2] Sobolev Institute of Mathematics,Siberian Division of the Russian Academy of Sciences
来源
Positivity | 2011年 / 15卷
关键词
Vector lattice; Functional calculus; Envelope representation; Convexity inequality; Sublinear operator; Superlinear operator; Polyhedral operator; Interval operator; Interval analysis; Subdifferential; 47A60; 47B65; 46A63; 65G40;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to obtain a version of continuous functional calculus and some new envelope representation results in vector lattices as well as to indicate some applications.
引用
收藏
页码:661 / 676
页数:15
相关论文
共 50 条
  • [21] Vector lattices of almost polynomial sequences
    A. W. Wickstead
    Positivity, 2010, 14 : 407 - 420
  • [22] Girsanov’s theorem in vector lattices
    Jacobus J. Grobler
    Coenraad C. A. Labuschagne
    Positivity, 2019, 23 : 1065 - 1099
  • [23] Finitely Extendable Functionals on Vector Lattices
    A.I. Veksler
    Positivity, 1997, 1 : 219 - 237
  • [24] Unbounded growth of sequences in vector lattices
    Gezer, Niyazi Anil
    POSITIVITY, 2023, 27 (02)
  • [25] Girsanov's theorem in vector lattices
    Grobler, Jacobus J.
    Labuschagne, Coenraad C. A.
    POSITIVITY, 2019, 23 (05) : 1065 - 1099
  • [26] Limit laws for martingales in vector lattices
    Stoica, George
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 476 (02) : 715 - 719
  • [27] Unbounded growth of sequences in vector lattices
    Niyazi Anıl Gezer
    Positivity, 2023, 27
  • [28] GENERALIZATION OF ORDER CONVERGENCE IN THE VECTOR LATTICES
    Azar, Kazem Haghnejad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (03): : 521 - 528
  • [29] Functional completions of Archimedean vector lattices
    Buskes, Gerard
    Schwanke, Christopher
    ALGEBRA UNIVERSALIS, 2016, 76 (01) : 53 - 69
  • [30] On the structure of orthosymmetric bilinear operators on vector lattices
    A. G. Kusraev
    Doklady Mathematics, 2006, 73 : 331 - 333