Some results on F4[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_4[v]$$\end{document}-double cyclic codes

被引:0
作者
Srinivasulu Bathala
Padmapani Seneviratne
机构
[1] Texas A&M University-Commerce,Department of Mathematics
关键词
Double cyclic codes; Dual codes; Mass formula; Double constacyclic codes; 94B05; 11T71;
D O I
10.1007/s40314-021-01428-3
中图分类号
学科分类号
摘要
Let R=F4+vF4,v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {R}={\mathbb {F}}_4+v{\mathbb {F}}_4, v^2=v$$\end{document}. A linear code over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {R}$$\end{document} is a double cyclic code of length (r, s), if the set of its coordinates can be partitioned into two parts of sizes r and s, so that any cyclic shift of coordinates of both parts leave the code invariant. In polynomial representation, these codes can be viewed as R[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {R}[x]$$\end{document}-submodules of R[x]⟨xr-1⟩×R[x]⟨xs-1⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\mathrm {R}[x]}{\langle x^r-1\rangle }\times \frac{\mathrm {R}[x]}{\langle x^s-1\rangle }$$\end{document}. In this paper, we determine generator polynomials of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {R}$$\end{document}-double cyclic codes and their duals for arbitrary values of r and s. We enumerate R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {R}$$\end{document}-double cyclic codes of length (2e1,2e2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2^{e_1},2^{e_2})$$\end{document} by giving a mass formula, where e1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1$$\end{document} and e2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_2$$\end{document} are positive integers. Some structural properties of double constacyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {R}$$\end{document} are also studied. These results are illustrated with some good examples.
引用
收藏
相关论文
共 85 条
[1]  
Abualrub T(2012)On Aust J Comb 54 115-126
[2]  
Aydin N(2017)-cyclic codes over Finite Fields Appl 45 96-106
[3]  
Seneviratne P(2014)A generalization of quasi-twisted codes: Multi-twisted codes Linear Multilinear Algebra 63 2089-2102
[4]  
Aydin N(2016)-additive codes Quant Inf Process 15 4089-4098
[5]  
Halilović A(2016)Quantum codes from cyclic codes over Des Codes Cryptogr 80 379-393
[6]  
Aydogdu I(2013)Codes over Appl Algebra Eng Commun Comput 24 369-386
[7]  
Siap I(2014) and some DNA applications J Algebra Comb Disc Appl 1 1-14
[8]  
Ashraf M(2009)Structure of Codes over the Ring Appl Algebra Eng Commun Comput 20 459-480
[9]  
Mohammad G(2008)Cyclic and constacyclic codes over a non-chain ring Adv Math Commun 2 273-292
[10]  
Bayram A(2009)On quasi-cyclic codes over Des Codes Cryptogr 54 167-179