A Note on Semilocal Group Rings

被引:0
|
作者
Angelina Y. M. Chin
机构
[1] University of Malaya,Institute of Mathematical Sciences, Faculty of Science
来源
Czechoslovak Mathematical Journal | 2002年 / 52卷
关键词
semilocal; group ring;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be an associative ring with identity and let J(R) denote the Jacobson radical of R. R is said to be semilocal if R/J(R) is Artinian. In this paper we give necessary and sufficient conditions for the group ring RG, where G is an abelian group, to be semilocal.
引用
收藏
页码:749 / 755
页数:6
相关论文
共 50 条
  • [41] Exponents of identities of group rings
    O. E. Bezushchak
    M. V. Zaitsev
    Mathematical Notes, 2011, 89 : 605 - 612
  • [42] LIE *- NILPOTENCE OF GROUP RINGS
    Gao, Yanyan
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (07) : 2800 - 2812
  • [43] On Modules Over Group Rings
    Kosan, M. Tamer
    Lee, Tsiu-Kwen
    Zhou, Yiqiang
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (01) : 87 - 102
  • [44] Commutativity of units in group rings
    Cristo, Osnel Broche
    Milies, Cesar Polcino
    COMBINATORIAL GROUP THEORY, DISCRETE GROUPS, AND NUMBER THEORY, 2006, 421 : 87 - 99
  • [45] PRESIMPLIFIABLE AND CYCLIC GROUP RINGS
    Ghanem, Manal
    Wyn-Jones, Alun
    Al-Ezeh, Hassan
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) : 3036 - 3046
  • [46] Group rings which are G-Dedekind prime rings
    Akalan, Evrim
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (02) : 694 - 697
  • [47] RANK-FUNCTIONS ON RINGS DERIVED FROM GROUP-RINGS
    TRLIFAJ, J
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (06) : 2049 - 2057
  • [48] On quotients of generalized Euclidean group rings
    Guyot, Luc
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1116 - 1120
  • [49] Nil-clean group rings
    Sahinkaya, Serap
    Tang, Gaohua
    Zhou, Yiqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (07)
  • [50] A REMARK ON GROUP RINGS OF PERIODIC GROUPS
    Grigoryan, Artur
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2016, 5 (04) : 23 - 25