A Note on Semilocal Group Rings

被引:0
|
作者
Angelina Y. M. Chin
机构
[1] University of Malaya,Institute of Mathematical Sciences, Faculty of Science
来源
Czechoslovak Mathematical Journal | 2002年 / 52卷
关键词
semilocal; group ring;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be an associative ring with identity and let J(R) denote the Jacobson radical of R. R is said to be semilocal if R/J(R) is Artinian. In this paper we give necessary and sufficient conditions for the group ring RG, where G is an abelian group, to be semilocal.
引用
收藏
页码:749 / 755
页数:6
相关论文
共 50 条
  • [31] *-Cleanness of finite group rings
    Tang, Gaohua
    Wu, Yansheng
    Li, Yu
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4190 - 4195
  • [32] (σ, τ)-derivations of group rings with applications
    Manju, Praveen
    Sharma, Rajendra Kumar
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 107
  • [33] Group rings with annihilator conditions
    Shen, L.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 38 - 46
  • [34] On Modules Over Group Rings
    M. Tamer Koşan
    Tsiu-Kwen Lee
    Yiqiang Zhou
    Algebras and Representation Theory, 2014, 17 : 87 - 102
  • [35] Group rings with annihilator conditions
    L. Shen
    Acta Mathematica Hungarica, 2018, 156 : 38 - 46
  • [36] Nilary group rings and algebras
    Al-Mallah, Omar
    Birkenmeier, Gary
    Alnoghashi, Hafedh
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1051 - 1072
  • [37] THE AXIOMATICS OF FREE GROUP RINGS
    Fine, Benjamin
    Gaglione, Anthony
    Kreuzer, Martin
    Rosenberger, Gerhard
    Spellman, Dennis
    GROUPS COMPLEXITY CRYPTOLOGY, 2021, 13 (02) : 3:1 - 3:13
  • [38] On nil clean group rings
    Cui, Jian
    Li, Yuanlin
    Wang, Haobai
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 790 - 796
  • [39] ON *-CLEAN GROUP RINGS II
    Huang, Hongdi
    Li, Yuanlin
    Yuan, Pingzhi
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 3171 - 3181
  • [40] Exponents of identities of group rings
    Bezushchak, O. E.
    Zaitsev, M. V.
    MATHEMATICAL NOTES, 2011, 89 (5-6) : 605 - 612