Localised solid-state nanopore fabrication via controlled breakdown using on-chip electrodes

被引:9
|
作者
Fried, Jasper P. [1 ,2 ]
Swett, Jacob L. [1 ]
Nadappuram, Binoy Paulose [3 ]
Fedosyuk, Aleksandra [3 ]
Gee, Alex [1 ]
Dyck, Ondrej E. [4 ]
Yates, James R. [5 ]
Ivanov, Aleksandar P. [3 ]
Edel, Joshua B. [3 ]
Mol, Jan A. [6 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
[3] Imperial Coll London, Dept Chem, London W12 0BZ, England
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
[5] Antonio Xavier Univ Nova Lisboa, Inst Tecnol Quim & Biol, Av Republ, P-2780157 Oeiras, Portugal
[6] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England
基金
欧洲研究理事会; 英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
solid-state nanopores; dielectric breakdown; nanofabrication; single-molecule sensing; nanopore arrays; DNA; NOISE;
D O I
10.1007/s12274-022-4535-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Controlled breakdown has recently emerged as a highly accessible technique to fabricate solid-state nanopores. However, in its most common form, controlled breakdown creates a single nanopore at an arbitrary location in the membrane. Here, we introduce a new strategy whereby breakdown is performed by applying the electric field between an on-chip electrode and an electrolyte solution in contact with the opposite side of the membrane. We demonstrate two advantages of this method. First, we can independently fabricate multiple nanopores at given positions in the membrane by localising the applied field to the electrode. Second, we can create nanopores that are self-aligned with complementary nanoelectrodes by applying voltages to the on-chip electrodes to locally heat the membrane during controlled breakdown. This new controlled breakdown method provides a path towards the affordable, rapid, and automatable fabrication of arrays of nanopores self-aligned with complementary on-chip nanostructures.
引用
收藏
页码:9881 / 9889
页数:9
相关论文
共 28 条
  • [21] Integrating Ionic Gate and Rectifier Within One Solid-State Nanopore via Modification with Dual-Responsive Copolymer Brushes
    Guo, Wei
    Xia, Hongwei
    Cao, Liuxuan
    Xia, Fan
    Wang, Shutao
    Zhang, Guangzhao
    Song, Yanlin
    Wang, Yugang
    Jiang, Lei
    Zhu, Daoben
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (20) : 3561 - 3567
  • [22] Probing the Small-Molecule Inhibition of an Anticancer Therapeutic Protein-Protein Interaction Using a Solid-State Nanopore
    Kwak, Dong-Kyu
    Chae, Hongsik
    Lee, Mi-Kyung
    Ha, Ji-Hyang
    Goyal, Gaurav
    Kim, Min Jun
    Kim, Ki-Bum
    Chi, Seung-Wook
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (19) : 5713 - 5717
  • [23] High-Voltage Biomolecular Sensing Using a Bacteriophage Portal Protein Covalently Immobilized within a Solid-State Nanopore
    Mojtabavi, Mehrnaz
    Greive, Sandra J.
    Antson, Alfred A.
    Wanunu, Meni
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (49) : 22540 - 22548
  • [24] Dwell Time Prolongation and Identification of Single Nucleotides Passing through a Solid-State Nanopore by Using Ammonium Sulfate Aqueous Solution
    Yanagi, Itaru
    Akahori, Rena
    Takeda, Ken-ichi
    ACS OMEGA, 2023, 8 (23): : 21285 - 21292
  • [25] Automated-Screening Oriented Electric Sensing of Vitamin B1 Using a Machine Learning Aided Solid-State Nanopore
    Mittal, Sneha
    Jena, Milan Kumar
    Pathak, Biswarup
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, : 1301 - 1310
  • [26] Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices
    Guzel, Fatma D.
    Miles, Benjamin
    MICRO & NANO LETTERS, 2018, 13 (09) : 1352 - 1357
  • [27] Fast and accurate quantification of insertion-site specific transgene levels from raw seed samples using solid-state nanopore technology
    Pearson, Michael D.
    Nguyen, Leslee
    Zhao, Yanan
    McKenna, William L.
    Morin, Trevor J.
    Dunbar, William B.
    PLOS ONE, 2019, 14 (12):
  • [28] Controlled size reduction and its underlying mechanism to form solid-state nanopores via electron beam induced carbon deposition
    Zeng, Shuangshuang
    Wen, Chenyu
    Li, Shiyu
    Chen, Xi
    Chen, Si
    Zhang, Shi-Li
    Zhang, Zhen
    NANOTECHNOLOGY, 2019, 30 (45)