Structure and rheology of concentrated wormlike micelles [4]at the shear-induced isotropic-to-nematic transition

被引:0
|
作者
J.-F. Berret
D.C. Roux
P. Lindner
机构
[1] Unité Mixte de Recherche CNRS / Université de Montpellier II (no. 5581),
[2] Groupe de Dynamique des Phases Condensées,undefined
[3] 34095 Montpellier Cedex 05,undefined
[4] France,undefined
[5] ,undefined
[6] Institute Laue-Langevin,undefined
[7] BP 156,undefined
[8] 38042 Grenoble Cedex 9,undefined
[9] France,undefined
关键词
PACS. 61.30.Eb Experimental determinations of smectic, nematic, cholesteric, and other structures - 83.50.Gd Nonlinear viscoelasticity - 64.70.-p Specific phase transitions - 82.70.-y Disperse systems;
D O I
暂无
中图分类号
学科分类号
摘要
We have investigated the simple shear flow behavior of wormlike micelles using small-angle neutron scattering and mechanical measurements. Ternary surfactant solutions made of cetylpyridinium chloride, hexanol and brine (0.2 M NaCl) and hereafter abbreviated as CPCl-Hex were studied in the concentrated regime, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. In a preliminary report (Berret et al. [#!ref16!#]), the discontinuity of slope observed in the shear stress versus shear rate curve was interpreted in terms of first-order phase transition between an isotropic state and a shear-induced nematic state (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} transition). At the transition rate, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, the solution exhibits a macroscopic phase separation into viscous and fluid layers (inhomogeneous shear flow). Above a second characteristic shear rate, the flow becomes homogeneous again, the sheared solution being nematic only. The neutron patterns obtained in the two-state inhomogeneous region have been re-examined. Based on a consistent analysis of both orientational and translational degrees of freedom related to the wormlike micelles, we emphasize new features for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} transition. In the present paper, the shear rate variations of the relative proportions of each phase in the two-state region, as well as the viscosity ratio between isotropic and nematic phases are derived. We demonstrate in addition that slightly above the transition rate, the shear induced nematic phase is already strongly oriented, with an order parameter P2 = 0.65. The orientational state is that of a nematic flow-oriented monodomain. Finally, from the locations of the neutron scattering maxima for each isotropic and nematic contributions, we evaluate the concentrations for each phase \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and derived a dynamical phase diagram of CPCl-Hex, in terms of the stress \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}versus\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. According to the classification by Schmitt et al. [#!ref22!#], the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} transition observed in CPCl-Hex micellar solutions could result from a positive flow-concentration coupling, in agreement with the observed monotonically increasing shear stress in the two-phase region.
引用
收藏
页码:67 / 77
页数:10
相关论文
共 50 条
  • [31] Shear-induced layered structure of polymeric micelles by SANS
    Jiang, Jun
    Burger, Christian
    Li, Chunhua
    Li, Jun
    Lin, Min Y.
    Colby, Ralph H.
    Rafailovich, Miriam H.
    Sokolov, Jonathan C.
    MACROMOLECULES, 2007, 40 (11) : 4016 - 4022
  • [32] A Study on the Condition of No Shear-Induced Structure Generation in Wormlike Micelle Solutions
    Saito, Keita
    Aoyama, Yuji
    Sato, Yasunori
    Takahashi, Tsutomu
    Fujii, Shuji
    NIHON REOROJI GAKKAISHI, 2022, 50 (02) : 235 - 243
  • [33] Characteristic Time for Disappearance of Shear-Induced Structure in Wormlike Micelle Solutions
    Saito, Keita
    Sato, Yasunori
    Takahashi, Tsutomu
    NIHON REOROJI GAKKAISHI, 2022, 50 (02) : 245 - 252
  • [34] SHEAR-INDUCED STRUCTURE IN A CONCENTRATED SUSPENSION OF SOLID SPHERES
    GADALAMARIA, F
    ACRIVOS, A
    JOURNAL OF RHEOLOGY, 1980, 24 (06) : 799 - 814
  • [35] SHEAR-INDUCED PHASE-TRANSITION OF LIVING POLYMERS (MICELLES)
    WANG, SQ
    JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (22): : 8381 - 8384
  • [36] Exploring shear alignment of concentrated wormlike micelles using rheology coupled with small-angle neutron scattering
    King, Joshua P.
    Butler, Calum S. G.
    Prescott, Stuart W.
    Sokolova, Anna V.
    de Campo, Liliana
    Williams, Ashley P.
    Tabor, Rico F.
    PHYSICS OF FLUIDS, 2022, 34 (08)
  • [37] Comparison of shear-induced conductivity anisotropy in a micellar system in the isotropic and the nematic phase
    Photinos, Panos
    LIQUID CRYSTALS, 2010, 37 (6-7) : 695 - 700
  • [38] Shear-Induced Isotropic to Nematic Transition of Liquid-Crystal Polymers: Identification of Gap Thickness and Slipping Effects
    Mendil-Jakani, Hakima
    Baroni, Patrick
    Noirez, Laurence
    LANGMUIR, 2009, 25 (09) : 5248 - 5252
  • [39] Structure and rheology during shear-induced crystallization of a latex suspension
    Panine, P
    Narayanan, T
    Vermant, J
    Mewis, J
    PHYSICAL REVIEW E, 2002, 66 (02):
  • [40] Light-scattering study on the shear-orientation coupling of liquids near isotropic-to-nematic phase transition
    Hirano, T
    Takagi, K
    Sakai, K
    PHYSICAL REVIEW E, 2005, 72 (04):