Moderate Deviations for Random Field Curie-Weiss Models

被引:0
|
作者
Matthias Löwe
Raphael Meiners
机构
[1] University of Münster,Institute for Mathematical Statistics
来源
Journal of Statistical Physics | 2012年 / 149卷
关键词
Random field Curie-Weiss model; Disordered mean-field; Moderate deviations; Large deviations; Transfer principle;
D O I
暂无
中图分类号
学科分类号
摘要
The random field Curie-Weiss model is derived from the classical Curie-Weiss model by replacing the deterministic global magnetic field by random local magnetic fields. This opens up a new and interestingly rich phase structure. In this setting, we derive moderate deviations principles for the random total magnetization Sn, which is the partial sum of (dependent) spins. A typical result is that under appropriate assumptions on the distribution of the local external fields there exist a real number m, a positive real number λ, and a positive integer k such that (Sn−nm)/nα satisfies a moderate deviations principle with speed n1−2k(1−α) and rate function λx2k/(2k)!, where 1−1/(2(2k−1))<α<1.
引用
收藏
页码:701 / 721
页数:20
相关论文
共 50 条
  • [1] Moderate Deviations for Random Field Curie-Weiss Models
    Loewe, Matthias
    Meiners, Raphael
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) : 701 - 721
  • [2] MODERATE DEVIATIONS FOR A CURIE-WEISS MODEL WITH DYNAMICAL EXTERNAL FIELD
    Reichenbachs, Anselm
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 725 - 739
  • [3] Dynamical moderate deviations for the Curie-Weiss model
    Collet, Francesca
    Kraaij, Richard C.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (09) : 2900 - 2925
  • [4] Path-space moderate deviations for a class of Curie-Weiss models with dissipation
    Collet, Francesca
    Kraaij, Richard C.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 4028 - 4061
  • [5] Path-space moderate deviation principles for the random field Curie-Weiss model
    Collet, Francesca
    Kraaij, Richard C.
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [6] On the averaged dynamics of the random field Curie-Weiss model
    Fontes, LR
    Mathieu, P
    Picco, P
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (04) : 1212 - 1245
  • [7] Path-space moderate deviations for a Curie-Weiss model of self-organized criticality
    Collet, Francesca
    Gorny, Matthias
    Kraaij, Richard C.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 765 - 781
  • [8] On the interplay of magnetic and molecular forces in Curie-Weiss ferrofluid models
    Georgii, HO
    Zagrebnov, V
    JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (1-2) : 79 - 107
  • [9] The Phase Diagram of the Quantum Curie-Weiss Model
    Lincoln Chayes
    Nicholas Crawford
    Dmitry Ioffe
    Anna Levit
    Journal of Statistical Physics, 2008, 133
  • [10] The phase diagram of the quantum Curie-Weiss model
    Chayes, Lincoln
    Crawford, Nicholas
    Ioffe, Dmitry
    Levit, Anna
    JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (01) : 131 - 149