Left Ideal Preserving Maps on Triangular Algebras

被引:0
作者
Hoger Ghahramani
机构
[1] University of Kurdistan,Department of Mathematics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2020年 / 44卷
关键词
Left multiplier; Local left multiplier; Left ideal preserving; Triangular algebra; Generalized triangular matrix algebras; Block upper triangular matrix algebras; 15A86; 16S50; 16D99; 16S99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} be unital algebras, M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} be an (A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},{\mathcal {B}})$$\end{document}-bimodule and T=AM0B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}=\begin{pmatrix} {\mathcal {A}}&{} {\mathcal {M}}\\ 0 &{} {\mathcal {B}}\end{pmatrix}$$\end{document} be the corresponding unital triangular algebra over a commutative unital ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document}. In this paper, we study whether every R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document}-linear map on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} that leaves invariant every left ideal of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} is a left multiplier, and give some necessary or sufficient conditions for a triangular algebra to have this property. We also give various examples illustrating limitations on extending some of the theory developed. We then apply our established results to generalized triangular matrix algebras and block upper triangular matrix algebras. Moreover, we introduce some algebras other than triangular algebras on which every R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document}-linear map is a left multiplier.
引用
收藏
页码:109 / 118
页数:9
相关论文
共 54 条
[1]  
An R(2009)Characterizations of derivations on triangular rings: additive maps derivable at idempotents Linear Algebra Appl 431 1070-1080
[2]  
Hou J(2004)Commuting traces and commmutativity preserving maps on triangular algebras J Algebra 280 797-824
[3]  
Benkovič D(1983)Idempotents and completely semiprime ideals Commun Algebra 11 567-580
[4]  
Eremita D(2000)Triangular matrix representations J Algebra 230 558-595
[5]  
Birkenmeier GF(2007)Characterizing homomorphisms, derivations and multipliers in rings with idempotents Proc R Soc Edinb Sect A 137 9-21
[6]  
Birkenmeier GF(2012)Multiplication algebra and maps determined by zero products Linear Multilinear Algebra 60 763-768
[7]  
Heatherly HE(1993)Mappings which preserve idempotents, local automorphisms, and local derivations Can J Math 45 483-496
[8]  
Kim JY(2009)Zero product determined matrix algebras Linear Algebra Appl 430 1486-1498
[9]  
Park JK(1961)A generalization of the ring of triangular matrices Nagoya Math J 18 13-25
[10]  
Bresar M(1989)Reflexive bimodules Can J Math 41 592-611