Brownian Motion Hitting Probabilities for General Two-Sided Square-Root Boundaries

被引:0
作者
Doncho S. Donchev
机构
[1] Sofia University,
来源
Methodology and Computing in Applied Probability | 2010年 / 12卷
关键词
Hitting probabilities; Two-sided boundaries; 60G12;
D O I
暂无
中图分类号
学科分类号
摘要
Let Bt be a Brownian motion, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(t) = a\sqrt{t+c}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(t) = b\sqrt{t+c}$\end{document}, t ≥ 0, a < b, c > 0, T > 0, and τ be the first hitting time of Bt either in f(t) or in g(t). We study the hitting probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v(t,x)=P_{t,x}\left(\tau\leq T,\phantom{1}B_{\tau}=f\left(\tau\right)\right)$\end{document} for 0 < t < T and g(t) < x < f(t), where Pt,x is a probability such that Pt,x(Bt = x) = 1. We give general description of v(t,x) and find explicit series expansion for it in case of some special boundaries. The case of more general diffusion processes is discussed as well.
引用
收藏
页码:237 / 245
页数:8
相关论文
共 9 条
  • [1] Anderson T(1960)A modification of the sequential probability ratio test to reduce the sample size Ann Math Stat 31 165-197
  • [2] Buonocore A(1990)On the two-boundary first-crossing-time problem for diffusion processes J Appl Probab 27 102-114
  • [3] Giorno V(1971)On stopping times for a Wiener process Theory Probab Appl 16 458-465
  • [4] Nobile A(1999)Approximations of boundary crossing probabilities for a Brownian motion J Appl Probab 36 1019-1030
  • [5] Riccardi L(undefined)undefined undefined undefined undefined-undefined
  • [6] Novikov A(undefined)undefined undefined undefined undefined-undefined
  • [7] Novikov A(undefined)undefined undefined undefined undefined-undefined
  • [8] Frisgling V(undefined)undefined undefined undefined undefined-undefined
  • [9] Kordzakhia N(undefined)undefined undefined undefined undefined-undefined