Hyers-Ulam-Rassias stability of the additive-quadratic mappings in non-Archimedean Banach spaces

被引:0
作者
C Park
H Azadi Kenary
TM Rassias
机构
[1] Hanyang University,Department of Mathematics
[2] College of Sciences,Department of Mathematics
[3] Yasouj University,Department of Mathematics
[4] National Technical University of Athens,undefined
来源
Journal of Inequalities and Applications | / 2012卷
关键词
Hyers-Ulam stability; fixed point method; non-Archimedean normed spaces;
D O I
暂无
中图分类号
学科分类号
摘要
Using the fixed point and direct methods, we prove the generalized Hyers-Ulam stability of the following additive-quadratic functional equation in non-Archimedean normed spaces
引用
收藏
相关论文
共 46 条
[1]  
Aoki T(1950)On the stability of the linear transformation in Banach spaces J. Math. Soc. Jpn 2 64-66
[2]  
Arriola LM(2005/06)Stability of the Cauchy functional equation over Real Anal. Exch 31 125-132
[3]  
Beyer WA(2011)-adic fields Int. J. Nonlinear Anal. Appl 2 93-103
[4]  
Azadi Kenary H(2011)Non-Archimedean stability of Cauchy-Jensen type functional equation J. Math. Ext 5 51-65
[5]  
Azadi Kenary H(2009)Approximate additive functional equations in closed convex cone J. Math. Ext 4 105-113
[6]  
Azadi Kenary H(2011)On the stability of a cubic functional equation in random normed spaces J. Nonlinear Sci. Appl 4 82-91
[7]  
Azadi Kenary H(1984)Hyers-Ulam-Rassias stability of the Apollonius type quadratic mapping in RN-spaces Aequ. Math 27 76-86
[8]  
Shafaat K(2003)Remarks on the stability of functional equations Bull. Korean Math. Soc 40 565-576
[9]  
Shafiee M(2004)On the general solution of a quartic functional equation Grazer Math. Ber 346 43-52
[10]  
Takbiri G(2005)On the stability of the Cauchy functional equation: a fixed point approach Topol. Appl 153 774-785