Isomorphisms of Partial Differential Equations in Clifford Analysis

被引:0
作者
Daniel Alfonso Santiesteban
Ricardo Abreu Blaya
机构
[1] Universidad Autónoma de Guerrero,
来源
Advances in Applied Clifford Algebras | 2022年 / 32卷
关键词
Clifford analysis; Structural sets; Dirac operator; Primary 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies some systems of second order partial differential equations associated to a Dirac type operator φ∂̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${^\varphi \!\underline{\partial }}$$\end{document} in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} and R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}, with respect to an arbitrary structural set φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. We develop a method by which we can transform these general systems into those connected to the standard Dirac operator ∂̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{\partial }$$\end{document}. One unexpected result is that there exists an isomorphism relating the above generalized equations to the original ones.
引用
收藏
相关论文
共 42 条
[1]  
Abreu Blaya R(2015)On some structural sets and a quaternionic Math. Nachr. 288 1451-1475
[2]  
Bory Reyes J(2016)hyperholomorphic function theory J. Math. Anal. Appl. 434 1138-1159
[3]  
Guzmán A(2017)On the Comput. Meth. Funct. Theory 17 101-119
[4]  
Kähler U(2016)-operator in Clifford analysis Math. Meth. Appl. Sci. 39 4787-4796
[5]  
Abreu Blaya R(1999)On the Adv. Appl. Clifford Algebras 9 23-40
[6]  
Bory Reyes J(2015)-hyperderivative of the AIP Conf. Proc. 1648 440005-197
[7]  
Guzmán A(2010)-Cauchy-type integral in Clifford analysis CUBO Math. J. 12 189-172
[8]  
Kähler U(2011)Higher order Borel–Pompeiu representations in Clifford analysis Math. J. Okayama Univ. 53 167-1159
[9]  
Abreu Blaya R(2017)On the Adv. Appl. Clifford Algebras 27 1147-3631
[10]  
Bory Reyes J(2018)-operator in hyperholomorphic function theory Math. Meth. Appl. Sci. 41 3622-1924