Nanocrystalline TiO2/SnO2 composites for gas sensors

被引:0
作者
M. Radecka
A. Kusior
A. Lacz
A. Trenczek-Zajac
B. Lyson-Sypien
K. Zakrzewska
机构
[1] AGH University of Science and Technology,Faculty of Materials Science and Ceramics
[2] AGH University of Science and Technology,Faculty of Electrical Engineering, Automatics, Computer Science and Electronics
来源
Journal of Thermal Analysis and Calorimetry | 2012年 / 108卷
关键词
TiO; SnO; Gas sensors; Nanopowders; Composites; Differential thermal analysis; Thermogravimetry; Mass spectrometry;
D O I
暂无
中图分类号
学科分类号
摘要
TiO2/SnO2 nanocomposites are studied as potential candidates for gas sensors. Commercial metal oxide nanopowders milled for 1 h in ethanol are used for preparing nanocomposites with varied composition from 100 mol% TiO2 to 100 mol% SnO2. Brunauer–Emmett–Teller (BET) adsorption isotherms served to determine specific surface area, SSA. The particle size distribution is established by means of Dynamic Light Scattering, DLS technique. Differential Thermal Analysis and Thermogravimetry, DTA/TG measurements within the temperature range of 20–900 °C indicate better stability of nanomaterials composed of bigger particles or agglomerates. The total mass loss varies from 0.9 to 8.5% for 100 mol% SnO2 and 100 mol% TiO2, respectively. The only gaseous products of decomposition are water and carbon dioxide. X-ray diffraction analysis of nanocomposites indicates two separate phases of different crystallite size, i.e., smaller rutile TiO2 (9 nm) and larger cassiterite SnO2 (28 nm). Gas sensor dynamic responses at 400 °C to the reducing gas—ammonia (NH3) are detected in the concentration range extending from 100 ppm to −5000 ppm. Nanosensor of 50 mol% SnO2/50 mol% TiO2 is stable and sensitive to the interaction with NH3 and gives the highest response at 400 °C.
引用
收藏
页码:1079 / 1084
页数:5
相关论文
共 120 条
  • [1] Yamazoe N(1991)New approaches for improving semiconductor gas sensors Sens Actuators B 5 7-19
  • [2] Timmer B(2005)Ammonia sensors and their applications—a review Sens Actuators B 107 666-677
  • [3] Olthuis W(2004)A route toward more selective and less humidity sensitive screen-printed SnO Sens Actuators B 100 221-227
  • [4] van den Berg A(2000) and WO J Mol Catal A Chem 155 183-191
  • [5] Ivanov P(2008) gas sensitive layers Sens Actuators B 134 403-408
  • [6] Hubalek J(1998)Desorption behavior of ammonia from TiO Sens Actuators B 52 251-256
  • [7] Malysz K(2011)-based specimens—ammonia sensing mechanism of double-layer sensors with TiO Appl Surf Sci 257 7988-7992
  • [8] Prášek J(2006)-based catalyst layers Sens Actuators B 114 910-915
  • [9] Vilanowa X(2004)Fabrication of SnO Sens Actuators B 101 199-206
  • [10] Llobet E(2006)–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fish Sens Actuators B 118 208-214