Remarks on limit sets of infinite iterated function systems

被引:0
作者
Martial R. Hille
机构
[1] Humboldt Universität zu Berlin,
来源
Monatshefte für Mathematik | 2012年 / 168卷
关键词
Iterated function system; Hausdorff dimension; Invariant set; Limit set; 28A80; 7E05; 37B10;
D O I
暂无
中图分类号
学科分类号
摘要
If an iterated function system (IFS) is finite, it is well known that there is a unique non-empty compact invariant set K and that K = π(I∞), where π is the coding map. For an infinite IFS, there are two different sets generalising K, namely π(I∞) and its closure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\pi(I^\infty)}}$$\end{document}. In this paper we investigate the relations between these sets and their Hausdorff dimensions. In particular, we show how to construct an IFS for any pair of prescribed dimensions for π(I∞) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\pi(I^\infty)}\setminus \pi(I^\infty)}$$\end{document} . Moreover, we investigate a set which depends only on the first iteration of an IFS, and characterise its relation to the abovementioned sets. This also extends and clarifies recent results by Mihail and Miculescu, who investigated the coding map for an infinite IFS and a condition for this map to be onto. Finally, we study the special case of one-dimensional IFS and show that in terms of the relations of the abovementioned sets these systems exhibit some very special features which do not generalise to higher dimensional situations.
引用
收藏
页码:215 / 237
页数:22
相关论文
共 8 条
[1]  
Hutchinson J.E.(1981)Fractals and self-similarity Indiana Univ. Math. J. 30 713-747
[2]  
Mauldin R.D.(1996)Dimensions and measures in infinite iterated function systems Proc. London Math. Soc. (3) 73 105-154
[3]  
Urbański M.(2009)The shift space for an infinite iterated function system Math. Rep. (Bucur.) 11(61) 21-32
[4]  
Mihail A.(1996)Hausdorff measure of infinitely generated self-similar sets Monatsh. Math. 122 387-399
[5]  
Miculescu R.(1995)Multifractal formalism for infinite multinomial measures Adv. Appl. Math. 16 132-150
[6]  
Moran M.(undefined)undefined undefined undefined undefined-undefined
[7]  
Riedi R.H.(undefined)undefined undefined undefined undefined-undefined
[8]  
Mandelbrot B.B.(undefined)undefined undefined undefined undefined-undefined