Regular submanifolds in conformal space ℚpn

被引:0
作者
Changxiong Nie
Chuanxi Wu
机构
[1] Hubei University,Faculty of Mathematics and Computer Sciences
[2] Hubei University,Institute of Mathematics Sciences
来源
Chinese Annals of Mathematics, Series B | 2012年 / 33卷
关键词
Conformal space; Conformal invariants; Willmore submanifolds; Conformal isotropic; 53A30; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
The authors study the regular submanifolds in the conformal space ℚpn and introduce the submanifold theory in the conformal space ℚpn. The first variation formula of the Willmore volume functional of pseudo-Riemannian submanifolds in the conformal space ℚpn is given. Finally, the conformal isotropic submanifolds in the conformal space ℚpn are classified.
引用
收藏
页码:695 / 714
页数:19
相关论文
共 25 条
  • [1] Alias L. J.(1999)Zero mean curvature surfaces with non-negative curvature in flat Lorentzian 4-spaces Proc. R. Soc. London 455A 631-636
  • [2] Palmer B.(1983)Domaines symetriques des quacriques projectives J. Math. Pures Appl. 62 327-348
  • [3] Cahen M.(2002)Moebius isoparametric hypersurfaces in Acta Math. Sin. (Engl. Ser.) 18 437-446
  • [4] Kerbrat Y.(2003) with two distinct principal curvatures Acta Math. Sin. (Engl. Ser.) 19 671-678
  • [5] Li H. Z.(2001)Surfaces with vanishing Moebius form in Tôhoku Math. J. 53 553-569
  • [6] Liu H. L.(2010)Moebius isotropic submanifolds in Sci. China Ser. A 53 953-965
  • [7] Wang C. P.(2007)Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space Chin. Ann. Math. 28B 299-310
  • [8] Li H. Z.(2008)Conformal CMC-surfaces in Lorentzian space forms Acta Math. Sinica 51 685-692
  • [9] Wang C. P.(2011)Space-like hypersurfaces with parallel conformal second fundamental forms in the conformal space (in Chinese) Acta Math. Sinica 54 125-136
  • [10] Liu H. L.(1992)Classification of type I time-like hyperspaces with parallel conformal second fundamental forms in the conformal space (in Chinese) Nagoya Math. J. 125 53-72