Sensitivity and performance of cavity optomechanical field sensors

被引:25
作者
Stefan Forstner
Joachim Knittel
Eoin Sheridan
Jon D. Swaim
Halina Rubinsztein-Dunlop
Warwick P. Bowen
机构
[1] School of Mathematics and Physics, University of Queensland, St Lucia
关键词
Cavity optomechanics; Integrated microcavity; Magnetic field sensors; Magnetostriction;
D O I
10.1007/s13320-012-0067-2
中图分类号
学科分类号
摘要
This article describes in detail a technique for modeling cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying stress across the sensor, which then induces a force on mechanical eigenmodes of the system. The force on each oscillator can then be determined from an overlap integral between magnetostrictive stress and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected. Furthermore, an optomechanical magnetic field sensor is compared to other magnetic field sensors in terms of sensitivity and potential for miniaturization. It is shown that an optomechanical sensor can potentially outperform state-of-the-art magnetometers of similar size, in particular other sensors based on a magnetostrictive mechanism. © The Author(s) 2012.
引用
收藏
页码:259 / 270
页数:11
相关论文
共 59 条
  • [11] Romalis M.V., Dang H.B., Atomic magnetometers for materials characterization, Materials Today, 14, 6, pp. 258-262, (2011)
  • [12] Xu S., Yashchuk V.V., Donaldson M.H., Rochester S.M., Budker D., Pines A., Magnetic resonance imaging with an optical atomic magnetometer, Proceedings of the National Academy of Sciences of the United States of America, 103, 34, pp. 12668-12671, (2006)
  • [13] Ledbetter M.P., Theis T., Blanchard J.W., Ring H., Ganssle P., Appelt S., Et al., Near-zero-field nuclear magnetic resonance, Physical Review Letters, 107, 10, (2011)
  • [14] Jang J., Budakian R., Maeno Y., Phase-locked cantilever magnetometry, Applied Physics Letters, 98, 13, (2011)
  • [15] Bouchard L.S., Acosta V.M., Bauch E., Budker D., Detection of the meissner effect with a diamond magnetometer, New Journal of Physics, 13, (2011)
  • [16] Budker D., Romalis M., Optical magnetometry, Nature Physics, 3, 4, pp. 227-234, (2007)
  • [17] Hmlinen M., Lounasmaa O.V., Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain, Reviews of Modern Physics, 65, 2, pp. 413-497, (1993)
  • [18] Palva S., Palva J.M., New vistas for α-frequency band oscillations, Trends in Neurosciences, 30, 4, pp. 150-158, (2007)
  • [19] Forstner S., Prams S., Knittel J., Van Ooijen E.D., Swaim J.D., Harris G.I., Et al., Cavity optomechanical magnetometer, Physics Review Letters, 108, 12, (2012)
  • [20] Forstner S., Knittel J., Rubinsztein-Dunlop H., Bowen W.P., Model of a microtoroidal magnetometer, Proc. SPIE, 8439, 2012