Sensitivity and performance of cavity optomechanical field sensors

被引:25
作者
Stefan Forstner
Joachim Knittel
Eoin Sheridan
Jon D. Swaim
Halina Rubinsztein-Dunlop
Warwick P. Bowen
机构
[1] School of Mathematics and Physics, University of Queensland, St Lucia
关键词
Cavity optomechanics; Integrated microcavity; Magnetic field sensors; Magnetostriction;
D O I
10.1007/s13320-012-0067-2
中图分类号
学科分类号
摘要
This article describes in detail a technique for modeling cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying stress across the sensor, which then induces a force on mechanical eigenmodes of the system. The force on each oscillator can then be determined from an overlap integral between magnetostrictive stress and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected. Furthermore, an optomechanical magnetic field sensor is compared to other magnetic field sensors in terms of sensitivity and potential for miniaturization. It is shown that an optomechanical sensor can potentially outperform state-of-the-art magnetometers of similar size, in particular other sensors based on a magnetostrictive mechanism. © The Author(s) 2012.
引用
收藏
页码:259 / 270
页数:11
相关论文
共 59 条
  • [1] Edelstein A., Advances in magnetometry, Journal of Physics: Condensed Matter, 19, 16, (2007)
  • [2] Diaz-Michelena M., Small magnetic sensors for space applications, Sensors, 9, 4, pp. 2271-2288, (2009)
  • [3] Ripka P., Janosek M., Advances in magnetic field sensors, IEEE Sensors Journal, 10, 6, pp. 1108-1116, (2010)
  • [4] Bucholtz F., Dagenais D.M., Koo K.P., High-frequency fibre-optic magnetometer with 70 ft/(Hz) resolution, Electronics Letters, 25, 25, pp. 1719-1721, (1989)
  • [5] Mamin H.J., Poggio M., Degen C.L., Rugar D., Nuclear magnetic resonance imaging with 90-nm resolution, Nature Nanotechnology, 2, 5, pp. 301-306, (2007)
  • [6] Pizzella V., Della Penna S., Del Gratta C., Romani G.L., SQUID systems for biomagnetic imaging, Superconductor Science and Technology, 14, 7, (2001)
  • [7] Chang A.M., Hallen H.D., Harriott L., Hess H.F., Kao H.L., Kwo J., Et al., Scanning hall probe microscopy, Applied Physics Letters, 61, 16, pp. 1974-1976, (1992)
  • [8] Dang H.B., Maloof A.C., Romalis M.V., Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer, Applied Physics Letters, 97, 15, pp. 151110-151111, (2010)
  • [9] Taylor J.M., Cappellaro P., Childress L., Jiang L., Budker D., Hemmer P.R., Et al., High-sensitivity diamond magnetometer with nanoscale resolution, Nature Physics, 4, 10, pp. 810-816, (2008)
  • [10] Vengalattore M., Higbie J.M., Leslie S.R., Guzman J., Sadler L.E., Stamper-Kurn D.M., High-resolution magnetometry with a spinor bose-einstein condensate, Physical Review Letters, 98, 20, (2007)