Asymptotic Properties of Solvable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document}-Symmetric Potentials

被引:0
作者
Géza Lévai
机构
[1] Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI),
关键词
symmetry; Solvable potentials; Asymptotic properties;
D O I
10.1007/s10773-010-0595-8
中图分类号
学科分类号
摘要
The asymptotic region of potentials has strong impact on their general properties. This problem is especially interesting for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document}-symmetric potentials, the real and imaginary components of which allow for a wider variety of asymptotic properties than in the case of purely real potentials. We consider exactly solvable potentials defined on an infinite domain and investigate their scattering and bound states with special attention to the boundary conditions determined by the asymptotic regions. The examples include potentials with asymptotically vanishing and non-vanishing real and imaginary potential components (Scarf II, Rosen-Morse II, Coulomb). We also compare the results with the asymptotic properties of some exactly non-solvable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document}-symmetric potentials. These studies might be relevant to the experimental realization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document}-symmetric systems.
引用
收藏
页码:997 / 1004
页数:7
相关论文
共 63 条
[1]  
Bender C.M.(1998)undefined Phys. Rev. Lett. 80 4243-undefined
[2]  
Boettcher B.(2007)undefined Rep. Prog. Phys. 70 947-undefined
[3]  
Bender C.M.(2002)undefined J. Math. Phys. 43 205-undefined
[4]  
Mostafazadeh A.(2002)undefined J. Math. Phys. 43 2814-undefined
[5]  
Mostafazadeh A.(2002)undefined J. Math. Phys. 43 3944-undefined
[6]  
Mostafazadeh A.(2000)undefined J. Phys. A, Math. Gen. 33 7165-undefined
[7]  
Lévai G.(2001)undefined Mod. Phys. Lett. A 30 1973-undefined
[8]  
Znojil M.(2001)undefined Phys. Lett. A 282 343-undefined
[9]  
Lévai G.(2002)undefined Phys. Lett. A 300 271-undefined
[10]  
Znojil M.(2006)undefined J. Phys. A, Math. Gen. 39 6484-undefined