Computable Heyting Algebras with Distinguished Atoms and Coatoms

被引:0
作者
Nikolay Bazhenov
机构
[1] Sobolev Institute of Mathematics,
来源
Journal of Logic, Language and Information | 2023年 / 32卷
关键词
Computable structure; Degree spectrum; Computable categoricity; Heyting algebra;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies Heyting algebras within the framework of computable structure theory. We prove that the class K containing all Heyting algebras with distinguished atoms and coatoms is complete in the sense of the work of Hirschfeldt et al. (Ann Pure Appl Logic 115(1-3):71-113, 2002). This shows that the class K is rich from the computability-theoretic point of view: for example, every possible degree spectrum can be realized by a countable structure from K. In addition, there is no simple syntactic characterization of computably categorical members of K (i.e., structures from K possessing a unique computable copy, up to computable isomorphisms).
引用
收藏
页码:3 / 18
页数:15
相关论文
共 47 条
[1]  
Alaev PE(2012)Computably categorical Boolean algebras enriched by ideals and atoms Annals of Pure and Applied Logic 163 485-499
[2]  
Bazhenov N(2016)Categoricity spectra for polymodal algebras Studia Logica 104 1083-1097
[3]  
Bazhenov N(2019)Computable contact algebras Fundamenta Informaticae 167 257-269
[4]  
Bazhenov NA(2017)Effective categoricity for distributive lattices and Heyting algebras Lobachevskii Journal of Mathematics 38 600-614
[5]  
Bazhenov NA(2021)Categoricity spectra of computable structures Journal of Mathematical Sciences 256 34-50
[6]  
Downey RG(2015)The complexity of computable categoricity Advances in Mathematics 268 423-466
[7]  
Kach AM(1977)Theorie der Numerierungen III Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 23 289-371
[8]  
Lempp S(1956)Effective procedures in field theory Philosophical Transactions of the Royal Society of London Ser A 248 407-432
[9]  
Lewis-Pye AEM(1980)Problem of the number of non-self-equivalent constructivizations Algebra and Logic 19 401-414
[10]  
Montalbán A(1980)Autostability of models Algebra and Logic 19 28-37