The Chirality Parameter for Chiral Chemical Solutions

被引:0
作者
Reza Mohammadi-Baghaee
Jalil Rashed-Mohassel
机构
[1] University of Tehran,Center of Excellence on Applied Electromagnetic Systems, School of ECE, College of Engineering
来源
Journal of Solution Chemistry | 2016年 / 45卷
关键词
Dispersive chiral media; Chiral chemical solutions; Specific rotation; Circular dichroism; Condon model;
D O I
暂无
中图分类号
学科分类号
摘要
The frequency dependent chirality parameter of a chiral chemical solution is derived as a function of the specific rotation and molar ellipticity analytically by solving Maxwell’s equations for a dispersive chiral medium. The specific rotations found by measurements in a wide range of frequencies for d-glucose solution is used to find the Condon model parameters for this important chiral chemical solution. The Cotton effect is analyzed with adequate accuracy in this Condon modulation as a summation term. The frequency dependent behaviors of the real and imaginary parts of the Condon model for chiral chemical solutions are similar to the measured data for the specific rotation and circular dichroism, respectively.
引用
收藏
页码:1171 / 1181
页数:10
相关论文
共 50 条
[21]   Structural transitions in chiral solutions and a microscopic model of a chiral string [J].
S. V. Stovbun ;
A. A. Skoblin ;
F. V. Bulygin ;
V. L. Minaev ;
V. O. Kompanets ;
V. B. Laptev ;
E. A. Ryabov ;
S. V. Chekalin ;
S. E. Permyakov .
Russian Journal of Physical Chemistry B, 2015, 9 :193-200
[22]   Structural transitions in chiral solutions and a microscopic model of a chiral string [J].
Stovbun, S. V. ;
Skoblin, A. A. ;
Bulygin, F. V. ;
Minaev, V. L. ;
Kompanets, V. O. ;
Laptev, V. B. ;
Ryabov, E. A. ;
Chekalin, S. V. ;
Permyakov, S. E. .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 9 (02) :193-200
[23]   Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles [J].
Cheng, Qingqing ;
Yang, Jian ;
Sun, Lichao ;
Liu, Chuang ;
Yang, Guizeng ;
Tao, Yunlong ;
Sun, Xuehao ;
Zhang, Binbin ;
Xu, Hongxing ;
Zhang, Qingfeng .
NANO LETTERS, 2023, 23 (23) :11376-11384
[24]   Hydrophobic Gold Nanoparticles with Intrinsic Chirality for the Efficient Fabrication of Chiral Plasmonic Nanocomposites [J].
Kowalska, Natalia ;
Bandalewicz, Filip ;
Kowalski, Jakub ;
Gomez-Grana, Sergio ;
Bagiriski, Maciej ;
Pastoriza-Santos, Isabel ;
Grzelczak, Marek ;
Matraszek, Joanna ;
Perez-Juste, Jorge ;
Lewandowski, Wiktor .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (44) :50013-50023
[25]   Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules [J].
Ben-Moshe, Assaf ;
Wolf, Sharon Grayer ;
Bar Sadan, Maya ;
Houben, Lothar ;
Fan, Zhiyuan ;
Govorov, Alexander O. ;
Markovich, Gil .
NATURE COMMUNICATIONS, 2014, 5
[26]   Amplification of Chirality in Photopatterned 3D Nanostructures of Chiral/Achiral Mixtures [J].
Jee, Hongsub ;
Chen, Guanying ;
Lee, Jaehyeong .
APPLIED SCIENCES-BASEL, 2022, 12 (17)
[27]   Light on Chirality: Absolute Asymmetric Formation of Chiral Molecules Relevant in Prebiotic Evolution [J].
Myrgorodska, Iuliia ;
Meinert, Cornelia ;
Hoffmann, Soren V. ;
Jones, Nykola C. ;
Nahon, Laurent ;
Meierhenrich, Uwe J. .
CHEMPLUSCHEM, 2017, 82 (01) :74-87
[28]   Tunable intrinsic chirality obtained by combining the extrinsic chiral structure on an anisotropic substrate [J].
Wu, Hongjin ;
Qi, Jiwei ;
Hu, Hao ;
Zhang, Sihao ;
Fu, Xianhui ;
Wu, Qiang ;
Chen, Zongqiang ;
Chen, Jing ;
Yu, Xuanyi ;
Sun, Qian .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2024, 33 (03)
[29]   Chiral Amplifier With Highly Tunable Plasmonic Optical Activities for Molecular Chirality Sensing [J].
Ma, Xiaoyun ;
Liu, Shengli ;
Ji, Yinglu ;
Ma, Sijia ;
Jiang, Jian ;
Zhang, Li ;
Wu, Xiaochun ;
Li, Jiafang ;
Liu, Minghua ;
Wang, Rong-Yao .
ADVANCED MATERIALS TECHNOLOGIES, 2025, 10 (10)
[30]   Chirality Sensing of Chiral Carboxylic Acids by a Ureido-Linked Zinc Bisporphyrinate [J].
Huang, Libing ;
Hu, Chuanjiang ;
Wang, Yong .
CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (14)