A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene

被引:4
|
作者
Su-Juan Li
Guo-Yan Zhao
Rong-Xia Zhang
Ya-Li Hou
Lin Liu
Huan Pang
机构
[1] Anyang Normal University,Key Laboratory for Clearer Energy and Functional Materials of Henan Province, College of Chemistry and Chemical Engineering
来源
Microchimica Acta | 2013年 / 180卷
关键词
Gold nanoparticles; Graphene; Nitrite; Amperometry; Sensor;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM−1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
引用
收藏
页码:821 / 827
页数:6
相关论文
共 50 条
  • [1] A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene
    Li, Su-Juan
    Zhao, Guo-Yan
    Zhang, Rong-Xia
    Hou, Ya-Li
    Liu, Lin
    Pang, Huan
    MICROCHIMICA ACTA, 2013, 180 (9-10) : 821 - 827
  • [2] Selective and Sensitive Nitrite Sensor Based on Glassy Carbon Electrode Modified by Silver Nanochains
    Shaikh, Tayyaba
    Ibupoto, Zaffar Hussain
    Talpur, Farah N.
    Sirajuddin
    Khaskheli, Abdul Rauf
    Agheem, Muhammad H.
    Siddiqui, Samia
    Tahira, Aneela
    Willander, Magnus
    Yu, Cong
    ELECTROANALYSIS, 2017, 29 (02) : 415 - 422
  • [3] A sensitive and selective electrochemical nitrite sensor based on a glassy carbon electrode modified with cobalt phthalocyanine-supported Pd nanoparticles
    Song, Xueying
    Gao, Li
    Li, Yamin
    Mao, Liqun
    Yang, Jing-He
    ANALYTICAL METHODS, 2017, 9 (21) : 3166 - 3171
  • [4] Graphene Nanosheets Modified Glassy Carbon Electrode as a Highly Sensitive and Selective Voltammetric Sensor for Rutin
    Du, Haijun
    Ye, Jianshan
    Zhang, Jiaqi
    Huang, Xiaodan
    Yu, Chengzhong
    ELECTROANALYSIS, 2010, 22 (20) : 2399 - 2406
  • [5] An amperometric sensor for nitric oxide based on a glassy carbon electrode modified with graphene, Nafion, and electrodeposited gold nanoparticles
    Yazhen Wang
    Bin Song
    Junhui Xu
    Shengshui Hu
    Microchimica Acta, 2015, 182 : 711 - 718
  • [6] An amperometric sensor for nitric oxide based on a glassy carbon electrode modified with graphene, Nafion, and electrodeposited gold nanoparticles
    Wang, Yazhen
    Song, Bin
    Xu, Junhui
    Hu, Shengshui
    MICROCHIMICA ACTA, 2015, 182 (3-4) : 711 - 718
  • [7] A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode
    Li, Jing
    Xie, Huaqing
    Chen, Lifei
    SENSORS AND ACTUATORS B-CHEMICAL, 2011, 153 (01) : 239 - 245
  • [8] A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode
    Ye, Daixin
    Luo, Liqiang
    Ding, Yaping
    Chen, Qiang
    Liu, Xiao
    ANALYST, 2011, 136 (21) : 4563 - 4569
  • [9] Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites
    Cui, Fei
    Zhang, Xiaoli
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2012, 669 : 35 - 41
  • [10] A Sensitive Chlorpromazine Voltammetric Sensor Based on Graphene Oxide Modified Glassy Carbon Electrode
    Tajik, Somayeh
    Beitollahi, Hadi
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY RESEARCH, 2019, 6 (01): : 171 - 182