Adapting k-means for supervised clustering

被引:0
|
作者
S. H. Al-Harbi
V. J. Rayward-Smith
机构
[1] Information Center,School of Computing Sciences
[2] University of East Anglia,undefined
来源
Applied Intelligence | 2006年 / 24卷
关键词
Classification; Supervised Clustering; Weighted Metrics; Simulated Annealing; Supervised ; -means;
D O I
暂无
中图分类号
学科分类号
摘要
k-means is traditionally viewed as an algorithm for the unsupervised clustering of a heterogeneous population into a number of more homogeneous groups of objects. However, it is not necessarily guaranteed to group the same types (classes) of objects together. In such cases, some supervision is needed to partition objects which have the same label into one cluster. This paper demonstrates how the popular k-means clustering algorithm can be profitably modified to be used as a classifier algorithm. The output field itself cannot be used in the clustering but it is used in developing a suitable metric defined on other fields. The proposed algorithm combines Simulated Annealing with the modified k-means algorithm. We apply the proposed algorithm to real data sets, and compare the output of the resultant classifier to that of C4.5.
引用
收藏
页码:219 / 226
页数:7
相关论文
共 50 条
  • [1] Adapting k-means for supervised clustering
    Al-Harbi, SH
    Rayward-Smith, VJ
    APPLIED INTELLIGENCE, 2006, 24 (03) : 219 - 226
  • [2] Adapting k-means for graph clustering
    Sami Sieranoja
    Pasi Fränti
    Knowledge and Information Systems, 2022, 64 : 115 - 142
  • [3] Full and Semi-supervised k-Means Clustering Optimised by Class Membership Hesitation
    Plonski, Piotr
    Zaremba, Krzysztof
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, ICANNGA 2013, 2013, 7824 : 218 - 225
  • [4] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):
  • [5] Subspace K-means clustering
    Marieke E. Timmerman
    Eva Ceulemans
    Kim De Roover
    Karla Van Leeuwen
    Behavior Research Methods, 2013, 45 : 1011 - 1023
  • [6] Kernel-Based Distance Metric Learning for Supervised k-Means Clustering
    Nguyen, Bac
    De Baets, Bernard
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (10) : 3084 - 3095
  • [7] Semi-supervised Text Categorization Using Recursive K-means Clustering
    Gowda, Harsha S.
    Suhil, Mahamad
    Guru, D. S.
    Raju, Lavanya Narayana
    RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 : 217 - 227
  • [8] K-Means Clustering With Incomplete Data
    Wang, Siwei
    Li, Miaomiao
    Hu, Ning
    Zhu, En
    Hu, Jingtao
    Liu, Xinwang
    Yin, Jianping
    IEEE ACCESS, 2019, 7 : 69162 - 69171
  • [9] Sparse kernel k-means clustering
    Park, Beomjin
    Park, Changyi
    Hong, Sungchul
    Choi, Hosik
    JOURNAL OF APPLIED STATISTICS, 2025, 52 (01) : 158 - 182
  • [10] K-means Data Clustering with Memristor Networks
    Jeong, YeonJoo
    Lee, Jihang
    Moon, John
    Shin, Jong Hoon
    Lu, Wei D.
    NANO LETTERS, 2018, 18 (07) : 4447 - 4453