Congruences modulo 4 for broken k-diamond partitions

被引:0
|
作者
Ernest X. W. Xia
机构
[1] Jiangsu University,Department of Mathematics
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Broken ; -Diamond partition; Congruence; Theta function; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, a number of parity results satisfied by Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} for small values of k have been proved by Radu and Sellers and others. However, congruences modulo 4 for Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} are unknown. In this paper, we will prove five congruences modulo 4 for Δ5(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _5(n)$$\end{document}, four infinite families of congruences modulo 4 for Δ7(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _7(n)$$\end{document} and one congruence modulo 4 for Δ11(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{11}(n)$$\end{document} by employing theta function identities. Furthermore, we will prove a new parity result for Δ2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2(n)$$\end{document}.
引用
收藏
页码:331 / 348
页数:17
相关论文
共 50 条
  • [21] New congruences modulo 5 and 9 for partitions with odd parts distinct
    Fang, Houqing
    Xue, Fanggang
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2020, 43 (11) : 1573 - 1586
  • [22] Congruences for partitions with odd parts distinct modulo 5
    Cui, Su-Ping
    Gu, Wen Xiang
    Ma, Zhen Sheng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) : 2151 - 2159
  • [23] General congruences modulo 5 and 7 for colour partitions
    Saikia, Nipen
    Boruah, Chayanika
    JOURNAL OF ANALYSIS, 2021, 29 (03) : 917 - 926
  • [24] Congruences for 9-regular partitions modulo 3
    Su-Ping Cui
    Nancy S. S. Gu
    The Ramanujan Journal, 2015, 38 : 503 - 512
  • [25] General congruences modulo 5 and 7 for colour partitions
    Nipen Saikia
    Chayanika Boruah
    The Journal of Analysis, 2021, 29 : 917 - 926
  • [26] Parity results for 13-regular partitions and broken 6-diamond partitions
    Donna Q. J. Dou
    Litao Guo
    Bernard L. S. Lin
    The Ramanujan Journal, 2017, 44 : 521 - 530
  • [27] Infinite families of congruences modulo 9 for 9-regular partitions
    Chen, Na
    Li, Xiaorong
    Yao, Olivia X. M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (02): : 163 - 172
  • [28] New congruences modulo 2, 4, and 8 for the number of tagged parts over the partitions with designated summands
    Nayandeep Deka Baruah
    Mandeep Kaur
    The Ramanujan Journal, 2020, 52 : 253 - 274
  • [29] New congruences modulo 2, 4, and 8 for the number of tagged parts over the partitions with designated summands
    Baruah, Nayandeep Deka
    Kaur, Mandeep
    RAMANUJAN JOURNAL, 2020, 52 (02) : 253 - 274
  • [30] Congruences modulo 3 for two interesting partitions arising from two theta function identities
    Das, Kuwali
    NOTE DI MATEMATICA, 2016, 36 (02): : 61 - 76