Congruences modulo 4 for broken k-diamond partitions

被引:0
作者
Ernest X. W. Xia
机构
[1] Jiangsu University,Department of Mathematics
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Broken ; -Diamond partition; Congruence; Theta function; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, a number of parity results satisfied by Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} for small values of k have been proved by Radu and Sellers and others. However, congruences modulo 4 for Δk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(n)$$\end{document} are unknown. In this paper, we will prove five congruences modulo 4 for Δ5(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _5(n)$$\end{document}, four infinite families of congruences modulo 4 for Δ7(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _7(n)$$\end{document} and one congruence modulo 4 for Δ11(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{11}(n)$$\end{document} by employing theta function identities. Furthermore, we will prove a new parity result for Δ2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2(n)$$\end{document}.
引用
收藏
页码:331 / 348
页数:17
相关论文
共 26 条
[1]  
Ahmed Z(2015)Parity results for broken 5-diamond, 7-diamond and 11-diamond partitions Int. J. Number Theory 11 527-542
[2]  
Baruah ND(2007)MacMahon’s partition analysis XI: broken diamonds and modular forms Acta Arith. 126 281-294
[3]  
Andrews GE(2010)New analogues of Ramanujan’s partition identities J. Number Theory 130 1898-1913
[4]  
Paule P(2008)Some congruences for Andrews–Paule’s broken Discret. Math. 308 5735-5741
[5]  
Chan HH(2014)-diamond partitions Ramanujan J. 35 165-178
[6]  
Toh PC(2011)Congruences for broken 3-diamond and 7 dots bracelet partitions Am. Math. Monthly 118 839-845
[7]  
Chan SH(2007)Ramanujan’s “most beautiful identity” Bull. Aust. Math. Soc. 75 121-126
[8]  
Cui SP(2009)On recent congruence results of Andrews and Paule Bull. Aust. Math. Soc. 79 507-512
[9]  
Gu NSS(2014)Elementary proofs of various facts about 3-cores J. Number Theory 135 1-7
[10]  
Hirschhorn MD(2011)Elementary proofs of parity results for broken 3-diamond partitions Acta Arith. 146 43-52