Almansi-Type Decomposition for Slice Regular Functions of Several Quaternionic Variables

被引:2
作者
Binosi, Giulio [1 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommarive 14, I-38123 Povo, Trento, Italy
关键词
Slice-regular functions; Almansi decomposition; Quaternions; Monogenic functions; Cauchy-Riemann operator;
D O I
10.1007/s11785-024-01529-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose an Almansi-type decomposition for slice regular functions of several quaternionic variables. Our method yields 2 n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>n$$\end{document} distinct and unique decompositions for any slice function with domain in H n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}<^>n$$\end{document} . Depending on the choice of the decomposition, every component is given explicitly, uniquely determined and exhibits desirable properties, such as harmonicity and circularity in the selected variables. As consequences of these decompositions, we give another proof of Fueter's Theorem in H n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}<^>n$$\end{document} , establish the biharmonicity of slice regular functions in every variable and derive mean value and Poisson formulas for them.
引用
收藏
页数:25
相关论文
共 27 条
  • [1] Alpay D, 2016, SLICE HYPERHOLOMORPH
  • [2] [Anonymous], 1934, Commentarii Math. Helvetici
  • [3] [Anonymous], 1899, Annali di Matematica Pura ed Applicata (1898-1922)
  • [4] Aronszajn N., 1983, Polyharmonic functions, px265
  • [5] Axler S., 2001, GRAD TEXT M, V137, DOI 10.1007/978-1-4757-8137-3
  • [6] Binosi G, 2023, Arxiv, DOI arXiv:2305.08772
  • [7] Colombo F., 2016, ENTIRE SLICE REGULAR, DOI [10.1007/978-3-319-49265-0, DOI 10.1007/978-3-319-49265-0]
  • [8] Algebraic Properties of the Module of Slice Regular Functions in Several Quaternionic Variables
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (04) : 1581 - 1602
  • [9] Colombo F, 2011, PROG MATH, V289, P1, DOI 10.1007/978-3-0348-0110-2
  • [10] Slice monogenic functions
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) : 385 - 403