Functional equations of real analytic Jacobi Eisenstein series

被引:0
作者
Shin-ichiro Mizumoto
机构
[1] Tokyo Institute of Technology,Department of Mathematics
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 2019年 / 89卷
关键词
Siegel modular forms; Jacobi forms; Eisenstein series; 11F46; 11F50;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of meromorphic continuation and the functional equation of the real analytic Jacobi Eisenstein series of degree m and matrix index T in case T is a kernel form.
引用
收藏
页码:55 / 75
页数:20
相关论文
共 14 条
[1]  
Arakawa T(1990)Real analytic Eisenstein series for the Jacobi group Abh. Math. Semin. Univ. Hambg. 60 131-148
[2]  
Arakawa T(1994)Jacobi Eisenstein series and a basis problem for Jacobi forms Comment. Math. Univ. St. Pauli 43 181-216
[3]  
Diehl B(1980)Die analytische Fortsetzung der Eisensteinreihe zur Siegelschen Modulgruppe J. Reine Angew. Math. 317 40-73
[4]  
Gerschgorin S(1931)Über die Abgrenzung der Eigenwerte einer Matrix Bull. Acad. Sci. URSS. Cl. Sci. Math. Nat. 6 749-754
[5]  
Heim B(2003)Analytic Jacobi Eisenstein series and the Shimura method J. Math. Kyoto Univ. 43 451-464
[6]  
Kalinin VL(1977)Eisenstein series on the symplectic group (English translation) Math. USSR Sb. 32 449-476
[7]  
Katsurada H(1999)An explicit formula for Siegel series Am. J. Math. 121 415-452
[8]  
Kohnen W(1994)Non-holomorphic Poincaré-type series on Jacobi groups J. Number Theory 46 70-99
[9]  
Kohnen W(2002)Lifting modular forms of half-integral weight to Siegel modular forms of even genus Math. Ann. 322 787-809
[10]  
Mizumoto S(1993)Eisenstein series for Siegel modular groups Math. Ann. 297 581-625