A two-stage adaptive multi-fidelity surrogate model-assisted multi-objective genetic algorithm for computationally expensive problems

被引:0
|
作者
Qi Zhou
Jinhong Wu
Tao Xue
Peng Jin
机构
[1] Huazhong University of Science and Technology,School of Aerospace Engineering
来源
Engineering with Computers | 2021年 / 37卷
关键词
Multi-fidelity surrogate model; Model management; Prediction uncertainty; Simulation-based design; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Surrogate model-assisted multi-objective genetic algorithms (MOGA) show great potential in solving engineering design problems since they can save computational cost by reducing the calls of expensive simulations. In this paper, a two-stage adaptive multi-fidelity surrogate (MFS) model-assisted MOGA (AMFS-MOGA) is developed to further relieve their computational burden. In the warm-up stage, a preliminary Pareto frontier is obtained relying only on the data from the low-fidelity (LF) model. In the second stage, an initial MFS model is constructed based on the data from both LF and high-fidelity (HF) models at the samples, which are selected from the preliminary Pareto set according to the crowding distance in the objective space. Then the fitness values of individuals are evaluated using the MFS model, which is adaptively updated according to two developed strategies, an individual-based updating strategy and a generation-based updating strategy. The former considers the prediction uncertainty from the MFS model, while the latter takes the discrete degree of the population into consideration. The effectiveness and merits of the proposed AMFS-MOGA approach are illustrated using three benchmark tests and the design optimization of a stiffened cylindrical shell. The comparisons between the proposed AMFS-MOGA approach and some existing approaches considering the quality of the obtained Pareto frontiers and computational efficiency are made. The results show that the proposed AMFS-MOGA method can obtain Pareto frontiers comparable to that obtained by the MOGA with HF model, while significantly reducing the number of evaluations of the expensive HF model.
引用
收藏
页码:623 / 639
页数:16
相关论文
共 50 条
  • [31] A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
    Li, Jinglu
    Wang, Peng
    Dong, Huachao
    Shen, Jiangtao
    Chen, Caihua
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [32] An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization
    Nan Zheng
    Handing Wang
    Bo Yuan
    Complex & Intelligent Systems, 2022, 8 : 4339 - 4356
  • [33] A Two-Stage Multi-Objective Genetic-Fuzzy Mining Algorithm
    Chen, Chun-Hao
    He, Ji-Syuan
    Hong, Tzung-Pei
    2013 IEEE INTERNATIONAL WORKSHOP ON GENETIC AND EVOLUTIONARY FUZZY SYSTEMS (GEFS), 2013, : 16 - 20
  • [34] An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization
    Zheng, Nan
    Wang, Handing
    Yuan, Bo
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 4339 - 4356
  • [35] Surrogate Assisted Evolutionary Algorithm Based on Transfer Learning for Dynamic Expensive Multi-Objective Optimisation Problems
    Fan, Xuezhou
    Li, Ke
    Tan, Kay Chen
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [36] Towards a multi-fidelity & multi-objective Bayesian optimization efficient algorithm
    Charayron, Remy
    Lefebvre, Thierry
    Bartoli, Nathalie
    Morlier, Joseph
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 142
  • [37] A Two-stage Surrogate-Assisted Evolutionary Algorithm (TS-SAEA) for Expensive Multi/Many-objective Optimization
    Li, Jinglu
    Wang, Peng
    Dong, Huachao
    Shen, Jiangtao
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 73
  • [38] MULTI-OBJECTIVE OPTIMIZATION OF RUNNER BLADES USING A MULTI-FIDELITY ALGORITHM
    Bahrami, Salman
    Tribes, Christophe
    Devals, Christophe
    Vu, Thi C.
    Guibault, Francois
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2013, VOL 2, 2014,
  • [39] Parallel Distributed Genetic Algorithm for Expensive Multi-Objective Optimization Problems
    Szlachcic, Ewa
    Zubik, Waldemar
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2009, 2009, 5717 : 938 - +
  • [40] A two-stage evolutionary algorithm assisted by multi-archives for constrained multi-objective optimization
    Zhang, Wenjuan
    Liu, Jianchang
    Zhang, Wei
    Liu, Yuanchao
    Tan, Shubin
    APPLIED SOFT COMPUTING, 2024, 162