Neighbors of Seifert surgeries on a trefoil knot in the Seifert Surgery Network

被引:0
作者
Arnaud Deruelle
Katura Miyazaki
Kimihiko Motegi
机构
[1] Nihon University,Institute of Natural Sciences
[2] Tokyo Denki University,Faculty of Engineering
[3] Nihon University,Department of Mathematics
关键词
Dehn surgery; Hyperbolic knot; Seifert fiber space ; Trefoil knot; seiferter; Seifert surgery network; Primary 57M25; 57M50; Secondary 57N10;
D O I
10.1007/s40590-014-0034-6
中图分类号
学科分类号
摘要
A Seifert surgery is a pair (K,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, m)$$\end{document} of a knot K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} in S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^3$$\end{document} and an integer m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} such that m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-Dehn surgery on K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} results in a Seifert fiber space allowed to contain fibers of index zero. Twisting K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} along a trivial knot called a seiferter for (K,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, m)$$\end{document} yields Seifert surgeries. We study Seifert surgeries obtained from those on a trefoil knot by twisting along their seiferters. Although Seifert surgeries on a trefoil knot are the most basic ones, this family is rich in variety. For any m≠-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ne -2$$\end{document} it contains a successive triple of Seifert surgeries (K,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, m)$$\end{document}, (K,m+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, m +1)$$\end{document}, (K,m+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K, m +2)$$\end{document} on a hyperbolic knot K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}, e.g. 17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$17$$\end{document}-, 18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$18$$\end{document}-, 19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19$$\end{document}-surgeries on the (-2,3,7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-2, 3, 7)$$\end{document} pretzel knot. It contains infinitely many Seifert surgeries on strongly invertible hyperbolic knots none of which arises from the primitive/Seifert-fibered construction, e.g. (-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1)$$\end{document}-surgery on the (3,-3,-3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3, -3, -3)$$\end{document} pretzel knot.
引用
收藏
页码:523 / 558
页数:35
相关论文
共 23 条
  • [11] Ishihara K(2005)All integral slopes can be Seifert fibered slopes for hyperbolic knots Algebr. Geom. Topol. 5 369-378
  • [12] Motegi K(1984)Closed incompressible surfaces in complements of star links Pac. J. Math. 111 209-230
  • [13] Mattman T(2004)There are no unexpected tunnel number one knots of genus one Trans. Am. Math. Soc. 356 1385-1442
  • [14] Miyazaki K(undefined)undefined undefined undefined undefined-undefined
  • [15] Motegi K(undefined)undefined undefined undefined undefined-undefined
  • [16] Miyazaki K(undefined)undefined undefined undefined undefined-undefined
  • [17] Motegi K(undefined)undefined undefined undefined undefined-undefined
  • [18] Miyazaki K(undefined)undefined undefined undefined undefined-undefined
  • [19] Motegi K(undefined)undefined undefined undefined undefined-undefined
  • [20] Motegi K(undefined)undefined undefined undefined undefined-undefined