Quasi-projective reduction of toric varieties

被引:0
作者
A. A'Campo–Neuen
J. Hausen
机构
[1] Fakultät für Mathematik und Informatik,
[2] Universität Konstanz Fach D197,undefined
[3] D–78457 Konstanz,undefined
[4] Germany e-mail: Annette.ACampo@uni-konstanz.de,undefined
[5] Juergen.Hausen@uni-konstanz.de ,undefined
来源
Mathematische Zeitschrift | 2000年 / 233卷
关键词
Algebraic Variety; Projective Variety; Toric Variety; Projective Reduction; Categorical Quotient;
D O I
暂无
中图分类号
学科分类号
摘要
We define a quasi–projective reduction of a complex algebraic variety X to be a regular map from X to a quasi–projective variety that is universal with respect to regular maps from X to quasi–projective varieties. A toric quasi–projective reduction is the analogous notion in the category of toric varieties. For a given toric variety X we first construct a toric quasi–projective reduction. Then we show that X has a quasi–projective reduction if and only if its toric quasi–projective reduction is surjective. We apply this result to characterize when the action of a subtorus on a quasi–projective toric variety admits a categorical quotient in the category of quasi–projective varieties.
引用
收藏
页码:697 / 708
页数:11
相关论文
共 50 条
[41]   Derived categories of toric varieties III [J].
Kawamata Y. .
European Journal of Mathematics, 2016, 2 (1) :196-207
[42]   Families of pointed toric varieties and degenerations [J].
Sandra Di Rocco ;
Luca Schaffler .
Mathematische Zeitschrift, 2022, 301 :4119-4139
[43]   On a special class of simplicial toric varieties [J].
Barile, Margherita .
JOURNAL OF ALGEBRA, 2007, 308 (01) :368-382
[44]   The Hartogs Extension Phenomenon in Toric Varieties [J].
Sergey Feklistov ;
Alexey Shchuplev .
The Journal of Geometric Analysis, 2021, 31 :12034-12052
[45]   Codimension theorems for complete toric varieties [J].
Cox, D ;
Dickenstein, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) :3153-3162
[46]   Maps of toric varieties in Cox coordinates [J].
Brown, Gavin ;
Buczynski, Jaroslaw .
FUNDAMENTA MATHEMATICAE, 2013, 222 (03) :213-267
[47]   On the extension of Calabi flow on toric varieties [J].
Hongnian Huang .
Annals of Global Analysis and Geometry, 2011, 40 :1-19
[48]   Rigid toric matrix Schubert varieties [J].
Irem Portakal .
Journal of Algebraic Combinatorics, 2023, 57 :1265-1283
[49]   On stability of tangent bundle of toric varieties [J].
Biswas, Indranil ;
Dey, Arijit ;
Genc, Ozhan ;
Poddar, Mainak .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02)
[50]   The Hartogs Extension Phenomenon in Toric Varieties [J].
Feklistov, Sergey ;
Shchuplev, Alexey .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) :12034-12052