Quasi-projective reduction of toric varieties

被引:0
作者
A. A'Campo–Neuen
J. Hausen
机构
[1] Fakultät für Mathematik und Informatik,
[2] Universität Konstanz Fach D197,undefined
[3] D–78457 Konstanz,undefined
[4] Germany e-mail: Annette.ACampo@uni-konstanz.de,undefined
[5] Juergen.Hausen@uni-konstanz.de ,undefined
来源
Mathematische Zeitschrift | 2000年 / 233卷
关键词
Algebraic Variety; Projective Variety; Toric Variety; Projective Reduction; Categorical Quotient;
D O I
暂无
中图分类号
学科分类号
摘要
We define a quasi–projective reduction of a complex algebraic variety X to be a regular map from X to a quasi–projective variety that is universal with respect to regular maps from X to quasi–projective varieties. A toric quasi–projective reduction is the analogous notion in the category of toric varieties. For a given toric variety X we first construct a toric quasi–projective reduction. Then we show that X has a quasi–projective reduction if and only if its toric quasi–projective reduction is surjective. We apply this result to characterize when the action of a subtorus on a quasi–projective toric variety admits a categorical quotient in the category of quasi–projective varieties.
引用
收藏
页码:697 / 708
页数:11
相关论文
共 50 条
[21]   Toric varieties and modular forms [J].
Lev A. Borisov ;
Paul E. Gunnells .
Inventiones mathematicae, 2001, 144 :297-325
[22]   Automorphisms of Nonnormal Toric Varieties [J].
I. A. Boldyrev ;
S. A. Gaifullin .
Mathematical Notes, 2021, 110 :872-886
[23]   Frobenius splittings of toric varieties [J].
Payne, Sam .
ALGEBRA & NUMBER THEORY, 2009, 3 (01) :107-119
[24]   Heights of hypersurfaces in toric varieties [J].
Gualdi, Roberto .
ALGEBRA & NUMBER THEORY, 2018, 12 (10) :2403-2443
[25]   Toric Varieties of Schroder Type [J].
Huh, JiSun ;
Park, Seonjeong .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 317 (01) :161-177
[26]   ADDITIVE ACTIONS ON TORIC VARIETIES [J].
Arzhantsev, Ivan ;
Romaskevich, Elena .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) :1865-1879
[27]   Derivation algebras of toric varieties [J].
Campillo, A ;
Grabowski, J ;
Müller, G .
COMPOSITIO MATHEMATICA, 1999, 116 (02) :119-132
[28]   On the integral cohomology of toric varieties [J].
Kim, Jin Hong .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (02)
[29]   On the homology of subvarieties of toric varieties [J].
N. A. Bushueva .
Doklady Mathematics, 2010, 81 :108-110
[30]   MORPHIC COHOMOLOGY OF TORIC VARIETIES [J].
Roig-Maranges, Abdo .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2012, 14 (01) :113-132