Boundary value problem for one evolution equation

被引:0
|
作者
Sherif Amirov
机构
[1] Karabuk University,Department of Mathematics, Faculty of Science
来源
Indian Journal of Pure and Applied Mathematics | 2017年 / 48卷
关键词
Evolution equations; boundary value problem; parabolic equations changing with direction of time; Sobolev type differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the paper is to investigate the boundary value problem of the evolution equation Lu = K (x,t) ut - Δu + a (x,t) u = f (x,t). The characteristic property of this type of equations is the failure of the Petrovski’s “A” condition when coefficients are constant [1]. In this case, Cauchy problem is incorrect in the sense of Hadamard. Hence in this paper, the space, guaranteeing the correctness of the boundary value problem in the sense of Hadamard, is selected by adding some additional conditions to the coefficients of the equation.
引用
收藏
页码:363 / 367
页数:4
相关论文
共 50 条
  • [41] On a degenerate boundary value problem for the porous medium equation in spherical coordinates
    Kazakov, A. L.
    Kuznetsov, P. A.
    Spevak, L. F.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (01): : 119 - 129
  • [42] EFFICIENT BOUNDARY VALUE PROBLEM SOLUTION FOR A LANE-EMDEN EQUATION
    Harley, C.
    Momoniat, E.
    MATHEMATICAL & COMPUTATIONAL APPLICATIONS, 2010, 15 (04) : 613 - 620
  • [43] On a boundary value problem for a parabolic-hyperbolic equation of the fourth order
    Mamajonov, M.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, 2025, 117 (01): : 118 - 132
  • [44] Boundary value problem for fractional diffusion equation in a curvilinear angle domain
    Pskhu, A., V
    Ramazanov, M., I
    Gulmanov, N. K.
    Iskakov, S. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 83 - 95
  • [45] Essentially nonlocal boundary value problem for a certain partial differential equation
    Lerner, ME
    Repin, OA
    MATHEMATICAL NOTES, 2000, 67 (3-4) : 406 - 409
  • [46] Antiperiodic Boundary Value Problem for a Semilinear Differential Equation of Fractional Order
    Petrosyan, G. G.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2020, 34 : 51 - 66
  • [47] On the stability of the difference analogue of the boundary value problem for a mixed type equation
    Bakanov, G. B.
    Meldebekova, S. K.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 35 - 42
  • [48] Essentially nonlocal boundary value problem for a certain partial differential equation
    M. E. Lerner
    O. A. Repin
    Mathematical Notes, 2000, 67 : 406 - 409
  • [49] Rotational periodic boundary value problem for a fractional nonlinear differential equation
    Cheng, Yi
    Gao, Shanshan
    Agarwal, Ravi P.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,