Usage of wavefront sensor for estimation of atmospheric turbulence parameters

被引:9
|
作者
M. S. Andreeva
N. G. Iroshnikov
A. B. Koryabin
A. V. Larichev
V. I. Shmalgauzen
机构
[1] Andreeva, M.S.
[2] Iroshnikov, N.G.
[3] Koryabin, A.B.
[4] Larichev, A.V.
[5] Shmalgauzen, V.I.
来源
Larichev, A. V. (larichev@optics.ru) | 1600年 / Allerton Press Incorporation卷 / 48期
关键词
Atmospheric turbulence;
D O I
10.3103/S8756699012020136
中图分类号
学科分类号
摘要
A method is proposed to estimate the structure constant Cn2 and the outer scale L0 of turbulent fluctuations in Hartmann sensor measurements of the wavefront parameters of a light beam transmitted through a turbulent path. The method is based on expansion of phase fluctuations within a given aperture into a series of Zernike polynomials and statistical analysis of the coefficients of this expansion. Application of the method to estimating the parameters of fluid cell turbulence yielded results which are in good agreement with estimates obtained by other methods. The paper also presents the results of modeling based on measurements of the transverse component of the wind velocity on the path determined by correlation of the local slopes at four virtual subapertures.
引用
收藏
页码:197 / 204
页数:7
相关论文
共 50 条
  • [41] Maximum a priori estimation of wavefront slopes using a Hartmann wavefront sensor
    Sallberg, SA
    Welsh, BM
    Roggemann, MC
    DIGITAL IMAGE RECOVERY AND SYNTHESIS III, 1996, 2827 : 68 - 78
  • [42] On the estimation of atmospheric turbulence statistical characteristics
    Beghi, Alessandro
    Cenedese, Angelo
    Masiero, Andrea
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 625 - +
  • [43] Estimation of beam pointing parameters using return signal statistics: atmospheric turbulence effects
    Adepu, Sathyanarayana Prabhu
    Voelz, David
    Avula, Shashank
    Basu, Santasri
    UNCONVENTIONAL IMAGING II, 2006, 6307
  • [44] Simulation of an optimized holographic wavefront sensor for realistic turbulence scenarios
    Zepp, Andreas
    Gladysz, Szymon
    Stein, Karin
    Osten, Wolfgang
    ENVIRONMENTAL EFFECTS ON LIGHT PROPAGATION AND ADAPTIVE SYSTEMS IV, 2021, 11860
  • [45] ESTIMATION OF THE PARAMETERS OF THE ATMOSPHERIC-TURBULENCE SPECTRUM USING MEASUREMENTS OF THE SPATIAL INTENSITY COVARIANCE
    FREHLICH, RG
    APPLIED OPTICS, 1988, 27 (11): : 2194 - 2198
  • [46] Atmospheric Turbulence Phase Reconstruction via Deep Learning Wavefront Sensing
    Liu, Yutao
    Zheng, Mingwei
    Wang, Xingqi
    SENSORS, 2024, 24 (14)
  • [47] Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion
    Taylor, TS
    Gregory, DA
    OPTICS AND LASER TECHNOLOGY, 2002, 34 (08): : 665 - 669
  • [48] Deep tomography for the three-dimensional atmospheric turbulence wavefront aberration
    Zhang, Lingxiao
    Zhang, Lanqiang
    Zhong, Libo
    Rao, Changhui
    ASTRONOMY & ASTROPHYSICS, 2024, 687
  • [49] Atmospheric Turbulence Aberration Correction Based on Deep Learning Wavefront Sensing
    You, Jiang
    Gu, Jingliang
    Du, Yinglei
    Wan, Min
    Xie, Chuanlin
    Xiang, Zhenjiao
    SENSORS, 2023, 23 (22)
  • [50] Reconstruction of a Wavefront Distorted by Atmospheric Turbulence with Account for Optical Scheme of the Telescope
    Kucherenko, M. A.
    Lavrinov, V. V.
    Lavrinova, L. N.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2019, 55 (06) : 631 - 637