On maximal transitive sets of generic diffeomorphisms

被引:0
|
作者
Christian Bonatti
Lorenzo J. Díaz
机构
[1] Laboratoire de Topologie,
[2] UMR 5584 du CNRS,undefined
[3] BP 47 870,undefined
[4] 21078 Dijon Cedex,undefined
[5] France,undefined
[6] bonatti@u-bourgogne.fr,undefined
[7] Dep. Matemática PUC-Rio,undefined
[8] Marquês de S. Vicente 225,undefined
[9] 22453-900 Rio de Janeiro RJ,undefined
[10] Brazil,undefined
[11] lodiaz@mat.puc-rio.br,undefined
来源
Publications Mathématiques de l'Institut des Hautes Études Scientifiques | 2003年 / 96卷 / 1期
关键词
Specific Property; Pathological Feature; Periodic Point; Homoclinic Class; Generic Diffeomorphisms;
D O I
10.1007/s10240-003-0008-0
中图分类号
学科分类号
摘要
Abstract. – We construct locally generic C1-diffeomorphisms of 3-manifolds with maximal transitive Cantor sets without periodic points. The locally generic diffeomorphisms constructed also exhibit strongly pathological features generalizing the Newhouse phenomenon (coexistence of infinitely many sinks or sources). Two of these features are: coexistence of infinitely many nontrivial (hyperbolic and nonhyperbolic) attractors and repellors, and coexistence of infinitely many nontrivial (nonhyperbolic) homoclinic classes.¶We prove that these phenomena are associated to the existence of a homoclinic class H(P,f) with two specific properties:¶– in a C1-robust way, the homoclinic class H(P,f) does not admit any dominated splitting,¶– there is a periodic point P′ homoclinically related to P such that the Jacobians of P′ and P are greater than and less than one, respectively.
引用
收藏
页码:171 / 197
页数:26
相关论文
共 20 条
  • [1] Orbital shadowing property on chain transitive sets for generic diffeomorphisms
    Lee, Manseob
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (01) : 146 - 154
  • [2] Periodic orbits and chain-transitive sets of C1-diffeomorphisms
    Sylvain Crovisier
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2006, 104
  • [3] Generic diffeomorphisms on compact surfaces
    Abdenur, F
    Bonatti, C
    Crovisier, S
    Díaz, LJ
    FUNDAMENTA MATHEMATICAE, 2005, 187 (02) : 127 - 159
  • [4] Uniqueness of SRB Measures for Transitive Diffeomorphisms on Surfaces
    F. Rodriguez Hertz
    M. A. Rodriguez Hertz
    A. Tahzibi
    R. Ures
    Communications in Mathematical Physics, 2011, 306 : 35 - 49
  • [5] Dirac physical measures for generic diffeomorphisms
    Santiago, Bruno
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2018, 33 (02): : 185 - 194
  • [6] Shadowable chain transitive sets
    Sakai, Kazuhiro
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (10) : 1601 - 1618
  • [7] Shadowable Chain Recurrence Classes for Generic Diffeomorphisms
    Lee, Keonhee
    Lee, Manseob
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 399 - 409
  • [8] Asymptotic measure-expansiveness for generic diffeomorphisms
    Lee, Manseob
    OPEN MATHEMATICS, 2021, 19 (01): : 470 - 476
  • [9] Usual limit shadowable homoclinic classes of generic diffeomorphisms
    Manseob Lee
    Advances in Difference Equations, 2012
  • [10] Nonuniform hyperbolicity for C1-generic diffeomorphisms
    Flavio Abdenur
    Christian Bonatti
    Sylvain Crovisier
    Israel Journal of Mathematics, 2011, 183