Tools for Malliavin Calculus in UMD Banach Spaces

被引:0
作者
Matthijs Pronk
Mark Veraar
机构
[1] Delft University of Technology,Delft Institute of Applied Mathematics
来源
Potential Analysis | 2014年 / 40卷
关键词
Malliavin calculus; Skorohod integral; Anticipating processes; Meyer inequalities; UMD Banach space; Type 2 space; Chain rule; Itô formula; 60H07; 60B11; 60H05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the Malliavin derivatives and Skorohod integrals for processes taking values in an infinite dimensional space. Such results are motivated by their applications to SPDEs and in particular financial mathematics. Vector-valued Malliavin theory in Banach space E is naturally restricted to spaces E which have the so-called umd property, which arises in harmonic analysis and stochastic integration theory. We provide several new results and tools for the Malliavin derivatives and Skorohod integrals in an infinite dimensional setting. In particular, we prove weak characterizations, a chain rule for Lipschitz functions, a sufficient condition for pathwise continuity and an Itô formula for non-adapted processes.
引用
收藏
页码:307 / 344
页数:37
相关论文
共 33 条
  • [1] Amann H(2000)Compact embeddings of vector-valued Sobolev and Besov spaces Glas. Mat. Ser. III 35 161-177
  • [2] Baxendale P(1976)Gaussian measures on function spaces Am. J. Math. 98 891-952
  • [3] Brzeźniak Z(2008)Itô’s formula in UMD Banach spaces and regularity of solutions of the Zakai equation J. Differ. Equ. 245 30-58
  • [4] van Neerven JMAM(1992)Intégrales hilbertiennes anticipantes par rapport à un processus de Wiener cylindrique et calcul stochastique associé Appl. Math. Optim. 25 31-49
  • [5] Veraar MC(1998)Stochastic evolution equations with random generators Ann. Probab. 26 149-186
  • [6] Weis LW(1974)Mappings of Gaussian measures of cylindrical sets in Banach spaces Theory Probab. Appl. 19 445-460
  • [7] Grorud A(2010)Malliavin calculus and decoupling inequalities in Banach spaces J. Math. Anal. Appl. 363 383-398
  • [8] Pardoux É(2008)A Clark–Ocone formula in UMD Banach spaces Electron. Commun. Probab. 13 151-164
  • [9] León JA(1993)Quasi-sure analysis of stochastic flows and Banach space valued smooth functionals on the Wiener space J. Funct. Anal. 112 287-317
  • [10] Nualart D(2005)The Clark–Ocone formula for vector valued Wiener functionals J. Funct. Anal. 229 143-154